raver119 3c4e959e21 [WIP] More of CUDA (#95)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>
2019-08-05 11:27:05 +10:00

565 lines
21 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com), created on 19.11.2018
#include <op_boilerplate.h>
#include <loops/reduce3.h>
#include <loops/legacy_ops.h>
#include <types/types.h>
#include <specials_cuda.h>
using namespace simdOps;
namespace functions {
namespace reduce3 {
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
__global__ void execScalarGeneric(const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int* allocationPointer,
void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo) {
Reduce3<X,Z>::execScalarCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo);
}
template <typename X, typename Z>
__global__ void execAllGeneric(const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
Reduce3<X,Z>::execAllCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
__global__ void execGeneric(const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
Reduce3<X,Z>::execCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template <typename OpType>
__device__ void Reduce3<X,Z>::aggregatePartials(void* vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) {
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
auto sPartials = reinterpret_cast<Z*>(vsPartials);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
Nd4jLong floorPow2 = numItems;
if (floorPow2 & (floorPow2 - 1)) {
while(floorPow2 & (floorPow2 - 1))
floorPow2 &= floorPow2 - 1;
if (tid >= floorPow2)
sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
__syncthreads();
}
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
if (tid < activeThreads)
sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
__syncthreads();
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
__device__ void Reduce3<X,Z>::execScalarCuda( void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *allocationPointer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
auto x = reinterpret_cast<X*>(vx);
auto y = reinterpret_cast<X*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Z extraZ[3];
__shared__ Z* sPartials;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<Z*>(shmem);
extraZ[0] = (Z) 0.0f;
extraZ[1] = (Z) 0.0f;
if (extraParams != nullptr)
extraZ[2] = *(static_cast<Z*>(extraParams));
else
extraZ[2] = (Z) 0.0f;
}
__syncthreads();
sPartials[threadIdx.x] = OpType::startingValue(x);
Nd4jLong length = shape::length(xShapeInfo);
int xEws = shape::elementWiseStride(xShapeInfo);
int yEws = shape::elementWiseStride(yShapeInfo);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
char xOrder = shape::order(xShapeInfo);
char yOrder = shape::order(yShapeInfo);
if(xOrder == yOrder && (xEws > 0 && yEws > 0) && shape::strideDescendingCAscendingF(xShapeInfo) && shape::strideDescendingCAscendingF(yShapeInfo)) {
if (xEws == 1 && yEws == 1) {
for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x)
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i], y[i], extraZ), extraZ);
}
else {
for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x)
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i * xEws], y[i * yEws], extraZ), extraZ);
}
}
else {
sPartials[threadIdx.x] = OpType::startingValue(x);
auto threadCount = gridDim.x * blockDim.x;
for(Nd4jLong i = tid; i < length; i += threadCount) {
auto xOffset = shape::getIndexOffset(i, xShapeInfo, length);
auto yOffset = shape::getIndexOffset(i, yShapeInfo, length);
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset], y[yOffset], extraZ), extraZ);
}
}
__syncthreads();
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, length), extraZ);
__syncthreads();
if (gridDim.x > 1) {
auto tc = reinterpret_cast<unsigned int *>(reductionBuffer);
__shared__ bool amLast;
int rank = shape::rank(xShapeInfo);
tid = threadIdx.x;
Z *extraBuffer = (Z *) allocationPointer;
if (threadIdx.x == 0) {
reinterpret_cast<Z*>(reductionBuffer)[blockIdx.x] = sPartials[0];
extraBuffer[blockIdx.x] = extraZ[0];
extraBuffer[gridDim.x + blockIdx.x] = extraZ[1];
}
__threadfence();
__syncthreads();
if (threadIdx.x == 0) {
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
amLast = (ticket == gridDim.x - 1);
}
sPartials[tid] = OpType::startingValue(x);
__syncthreads();
if (amLast) {
tc[16384] = 0;
sPartials[threadIdx.x] = OpType::startingValue(x);
// TODO: later probably replace this. Right now we need extraZ sync for CosineSimilarity ONLY
if (tid == 0 && extraZ[0] != static_cast<Z>(0) && extraZ[1] != static_cast<Z>(0)) {
extraZ[0] = 0.0;
extraZ[1] = 0.0;
for (int i = 0; i < gridDim.x; i++) {
extraZ[0] += extraBuffer[i];
extraZ[1] += extraBuffer[gridDim.x + i];
}
}
for (Nd4jLong i = threadIdx.x; i < gridDim.x; i += blockDim.x)
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], static_cast<Z*>(reductionBuffer)[i], extraZ);
__syncthreads();
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraZ);
__syncthreads();
if (threadIdx.x == 0)
z[0] = OpType::postProcess(sPartials[0], length, extraZ);
}
}
else {
if (tid == 0) {
auto tc = reinterpret_cast<unsigned int*>(reductionBuffer);
tc[16384] = 0;
z[0] = OpType::postProcess(sPartials[0], length, extraZ);
//printf("Z: [%f]\n", (float) z[0]);
}
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
__device__ void Reduce3<X,Z>::transformAll( void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *xTadShapeInfo, Nd4jLong *xOffsets,
Nd4jLong *yTadShapeInfo,Nd4jLong *yOffsets) {
auto dx = reinterpret_cast<X*>(vx);
auto dy = reinterpret_cast<X*>(vy);
auto z = reinterpret_cast<Z*>(vz);
// initialize partials first
__shared__ Z* sPartials;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<Z*>(shmem);
}
__syncthreads();
Z startingVal = OpType::startingValue(dx);
sPartials[threadIdx.x] = startingVal;
X *tempX = reinterpret_cast<X*>(sPartials) + blockDim.x;
const int maxBlock = blockDim.x;
__shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1];
__shared__ int xTadLength;
__shared__ int yTadLength;
__shared__ int xTads;
__shared__ int yTads;
//reading initial data
if (threadIdx.x == 0) {
xTadLength = shape::length(xTadShapeInfo);
yTadLength = shape::length(yTadShapeInfo);
xTads = shape::length(xShapeInfo) / xTadLength;
yTads = shape::length(yShapeInfo) / yTadLength;
}
__syncthreads();
int limit = xTadLength / maxBlock;
if (xTadLength % maxBlock > 0)
limit++;
for (int r = blockIdx.x; r < xTads; r += blockDim.x * gridDim.x) {
X *x = dx + xOffsets[r];
if (threadIdx.x < xTadLength && threadIdx.x < maxBlock) {
auto x0 = shape::getIndexOffset(threadIdx.x, xTadShapeInfo, shape::length(xTadShapeInfo));
tempX[threadIdx.x] = x[x0];
}
__syncthreads();
for (int g = 0; g < yTads; g++) {
X *y = dy + yOffsets[g];
int ri = (r * yTads) + g;
sPartials[threadIdx.x] = startingVal;
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
extraZ[threadIdx.x] = startingVal;
__syncthreads();
// we might have data too large for single cache block, rendering cache useless though :(
for (int t = 0; t < limit; t++) {
// we reset tempX IF we have >1 tiles
if (t >= 1 || (limit > 1 && g > 0))
if (threadIdx.x + (t * maxBlock) < xTadLength) {
auto x0 = shape::getIndexOffset(threadIdx.x + (t * maxBlock), xTadShapeInfo, xTadLength);
tempX[threadIdx.x] = x[x0];
}
for (int f = threadIdx.x + (t * maxBlock); f < xTadLength && f < threadIdx.x + ((t + 1) * maxBlock); f += blockDim.x * gridDim.x) {
auto y0 = shape::getIndexOffset(f, yTadShapeInfo, yTadLength);
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(tempX[threadIdx.x], y[y0], extraZ), extraZ);
}
// we MUST step through this block altogether
__syncthreads();
}
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, xTadLength), extraZ);
__syncthreads();
if (threadIdx.x == 0) {
z[ri] = OpType::postProcess(sPartials[threadIdx.x], xTadLength, extraZ);
}
__syncthreads();
}
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
__device__ void Reduce3<X,Z>::transform(void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
// FIXME
if(shape::isScalar(zShapeInfo))
return;
if (yTadOnlyShapeInfo == nullptr) {
yTadOnlyShapeInfo = yShapeInfo; // execReduce3TAD case
}
auto x = reinterpret_cast<X*>(vx);
auto y = reinterpret_cast<X*>(vy);
auto z = reinterpret_cast<Z*>(vz);
Z startingVal = OpType::startingValue(x);
__shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1];
__shared__ Z* sPartials;
__shared__ int tadLen;
__shared__ Nd4jLong zLen;
__shared__ Nd4jLong xTadEws;
__shared__ Nd4jLong yTadEws;
__shared__ Nd4jLong yTadNum;
__shared__ char xTadOrder;
__shared__ char yTadOrder;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<Z*>(shmem);
tadLen = shape::length(tadOnlyShapeInfo);
zLen = shape::length(zShapeInfo);
xTadEws = shape::elementWiseStride(tadOnlyShapeInfo);
yTadEws = shape::elementWiseStride(yTadOnlyShapeInfo);
yTadNum = shape::length(yShapeInfo) / tadLen;
xTadOrder = shape::order(tadOnlyShapeInfo);
yTadOrder = shape::order(yTadOnlyShapeInfo);
}
__syncthreads();
sPartials[threadIdx.x] = startingVal;
if(xTadEws >= 1 && yTadEws >= 1 && xTadOrder == yTadOrder) {
for(int i = blockIdx.x; i < zLen; i+= gridDim.x) {
Nd4jLong xOffset = tadOffsets[i];
Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i];
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
extraZ[threadIdx.x] = startingVal;
__syncthreads();
for (int j = threadIdx.x; j < tadLen; j += blockDim.x) {
Nd4jLong xOffset2 = xOffset + j*xTadEws;
Nd4jLong yOffset2 = yOffset + j*yTadEws;
sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ);
}
__syncthreads();
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLen), extraZ);
__syncthreads();
if (threadIdx.x == 0)
z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ);
__syncthreads();
}
}
else {
for(int i = blockIdx.x; i < zLen; i += gridDim.x) {
Nd4jLong xOffset = tadOffsets[i];
Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i];
if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen)
extraZ[threadIdx.x] = startingVal;
__syncthreads();
for (int j = threadIdx.x; j < tadLen; j += blockDim.x) {
Nd4jLong xOffset2 = xOffset + shape::getIndexOffset(j, tadOnlyShapeInfo, tadLen);
Nd4jLong yOffset2 = yOffset + shape::getIndexOffset(j, yTadOnlyShapeInfo, tadLen);
sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ);
}
__syncthreads();
aggregatePartials<OpType>(reinterpret_cast<void*>(sPartials), threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLen), extraZ);
__syncthreads();
if (threadIdx.x == 0)
z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ);
__syncthreads();
}
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__device__ void Reduce3<X,Y>::execCuda(const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
DISPATCH_BY_OPNUM_TT(transform, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__device__ void Reduce3<X,Y>::execAllCuda( const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
DISPATCH_BY_OPNUM_TT(transformAll, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
__device__ void Reduce3<X,Y>::execScalarCuda(const int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int * allocationPointer, void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo) {
DISPATCH_BY_OPNUM_TT(execScalarCuda, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo), REDUCE3_OPS);
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
__host__ void Reduce3<X,Z>::exec(dim3 launchDims, cudaStream_t *stream,
int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
execGeneric<X, Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
nd4j::DebugHelper::checkErrorCode(stream, "reduce3exec(...) failed");
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
__host__ void Reduce3<X,Z>::execAll(dim3 launchDims, cudaStream_t *stream,
int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationPointer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
execAllGeneric<X, Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
nd4j::DebugHelper::checkErrorCode(stream, "execAllGeneric(...) failed");
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
__host__ void Reduce3<X,Z>::execScalar(dim3 launchDims, cudaStream_t *stream,
int opNum,
void *vx, Nd4jLong *xShapeInfo,
void *vy, Nd4jLong *yShapeInfo,
void *extraParams,
void *vz, Nd4jLong *zShapeInfo,
int* allocationPointer,
void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo) {
execScalarGeneric<X,Z><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo);
nd4j::DebugHelper::checkErrorCode(stream, "execScalarGeneric(...) failed");
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES);
}
}