cavis/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/evaluation/EvaluationCalibrationTest.java
Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

432 lines
18 KiB
Java

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.evaluation;
import org.junit.Test;
import org.nd4j.evaluation.classification.EvaluationBinary;
import org.nd4j.evaluation.classification.EvaluationCalibration;
import org.nd4j.linalg.BaseNd4jTest;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.factory.Nd4jBackend;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.ops.transforms.Transforms;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* Created by Alex on 05/07/2017.
*/
public class EvaluationCalibrationTest extends BaseNd4jTest {
public EvaluationCalibrationTest(Nd4jBackend backend) {
super(backend);
}
@Override
public char ordering() {
return 'c';
}
@Test
public void testReliabilityDiagram() {
DataType dtypeBefore = Nd4j.defaultFloatingPointType();
EvaluationCalibration first = null;
String sFirst = null;
try {
for (DataType globalDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF, DataType.INT}) {
Nd4j.setDefaultDataTypes(globalDtype, globalDtype.isFPType() ? globalDtype : DataType.DOUBLE);
for (DataType lpDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) {
//Test using 5 bins - format: binary softmax-style output
//Note: no values fall in fourth bin
//[0, 0.2)
INDArray bin0Probs = Nd4j.create(new double[][]{{1.0, 0.0}, {0.9, 0.1}, {0.85, 0.15}}).castTo(lpDtype);
INDArray bin0Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {1.0, 0.0}, {0.0, 1.0}}).castTo(lpDtype);
//[0.2, 0.4)
INDArray bin1Probs = Nd4j.create(new double[][]{{0.80, 0.20}, {0.7, 0.3}, {0.65, 0.35}}).castTo(lpDtype);
INDArray bin1Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}}).castTo(lpDtype);
//[0.4, 0.6)
INDArray bin2Probs = Nd4j.create(new double[][]{{0.59, 0.41}, {0.5, 0.5}, {0.45, 0.55}}).castTo(lpDtype);
INDArray bin2Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {0.0, 1.0}, {0.0, 1.0}}).castTo(lpDtype);
//[0.6, 0.8)
//Empty
//[0.8, 1.0]
INDArray bin4Probs = Nd4j.create(new double[][]{{0.0, 1.0}, {0.1, 0.9}}).castTo(lpDtype);
INDArray bin4Labels = Nd4j.create(new double[][]{{0.0, 1.0}, {0.0, 1.0}}).castTo(lpDtype);
INDArray probs = Nd4j.vstack(bin0Probs, bin1Probs, bin2Probs, bin4Probs);
INDArray labels = Nd4j.vstack(bin0Labels, bin1Labels, bin2Labels, bin4Labels);
EvaluationCalibration ec = new EvaluationCalibration(5, 5);
ec.eval(labels, probs);
for (int i = 0; i < 1; i++) {
double[] avgBinProbsClass;
double[] fracPos;
if (i == 0) {
//Class 0: needs to be handled a little differently, due to threshold/edge cases (0.8, etc)
avgBinProbsClass = new double[]{0.05, (0.59 + 0.5 + 0.45) / 3, (0.65 + 0.7) / 2.0,
(0.8 + 0.85 + 0.9 + 1.0) / 4};
fracPos = new double[]{0.0 / 2.0, 1.0 / 3, 1.0 / 2, 3.0 / 4};
} else {
avgBinProbsClass = new double[]{bin0Probs.getColumn(i).meanNumber().doubleValue(),
bin1Probs.getColumn(i).meanNumber().doubleValue(),
bin2Probs.getColumn(i).meanNumber().doubleValue(),
bin4Probs.getColumn(i).meanNumber().doubleValue()};
fracPos = new double[]{bin0Labels.getColumn(i).sumNumber().doubleValue() / bin0Labels.size(0),
bin1Labels.getColumn(i).sumNumber().doubleValue() / bin1Labels.size(0),
bin2Labels.getColumn(i).sumNumber().doubleValue() / bin2Labels.size(0),
bin4Labels.getColumn(i).sumNumber().doubleValue() / bin4Labels.size(0)};
}
org.nd4j.evaluation.curves.ReliabilityDiagram rd = ec.getReliabilityDiagram(i);
double[] x = rd.getMeanPredictedValueX();
double[] y = rd.getFractionPositivesY();
assertArrayEquals(avgBinProbsClass, x, 1e-3);
assertArrayEquals(fracPos, y, 1e-3);
String s = ec.stats();
if(first == null) {
first = ec;
sFirst = s;
} else {
// assertEquals(first, ec);
assertEquals(sFirst, s);
assertTrue(first.getRDiagBinPosCount().equalsWithEps(ec.getRDiagBinPosCount(), lpDtype == DataType.HALF ? 1e-3 : 1e-5)); //Lower precision due to fload
assertTrue(first.getRDiagBinTotalCount().equalsWithEps(ec.getRDiagBinTotalCount(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
assertTrue(first.getRDiagBinSumPredictions().equalsWithEps(ec.getRDiagBinSumPredictions(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
assertArrayEquals(first.getLabelCountsEachClass(), ec.getLabelCountsEachClass());
assertArrayEquals(first.getPredictionCountsEachClass(), ec.getPredictionCountsEachClass());
assertTrue(first.getProbHistogramOverall().equalsWithEps(ec.getProbHistogramOverall(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
assertTrue(first.getProbHistogramByLabelClass().equalsWithEps(ec.getProbHistogramByLabelClass(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
}
}
}
}
} finally {
Nd4j.setDefaultDataTypes(dtypeBefore, dtypeBefore);
}
}
@Test
public void testLabelAndPredictionCounts() {
int minibatch = 50;
int nClasses = 3;
INDArray arr = Nd4j.rand(minibatch, nClasses);
arr.diviColumnVector(arr.sum(1));
INDArray labels = Nd4j.zeros(minibatch, nClasses);
Random r = new Random(12345);
for (int i = 0; i < minibatch; i++) {
labels.putScalar(i, r.nextInt(nClasses), 1.0);
}
EvaluationCalibration ec = new EvaluationCalibration(5, 5);
ec.eval(labels, arr);
int[] expLabelCounts = labels.sum(0).data().asInt();
// FIXME: int cast
int[] expPredictionCount = new int[(int) labels.size(1)];
INDArray argmax = Nd4j.argMax(arr, 1);
for (int i = 0; i < argmax.length(); i++) {
expPredictionCount[argmax.getInt(i)]++;
}
assertArrayEquals(expLabelCounts, ec.getLabelCountsEachClass());
assertArrayEquals(expPredictionCount, ec.getPredictionCountsEachClass());
}
@Test
public void testResidualPlots() {
int minibatch = 50;
int nClasses = 3;
INDArray arr = Nd4j.rand(minibatch, nClasses);
arr.diviColumnVector(arr.sum(1));
INDArray labels = Nd4j.zeros(minibatch, nClasses);
Random r = new Random(12345);
for (int i = 0; i < minibatch; i++) {
labels.putScalar(i, r.nextInt(nClasses), 1.0);
}
int numBins = 5;
EvaluationCalibration ec = new EvaluationCalibration(numBins, numBins);
ec.eval(labels, arr);
INDArray absLabelSubProb = Transforms.abs(labels.sub(arr));
INDArray argmaxLabels = Nd4j.argMax(labels, 1);
int[] countsAllClasses = new int[numBins];
int[][] countsByClass = new int[nClasses][numBins]; //Histogram count of |label[x] - p(x)|; rows x are over classes
double binSize = 1.0 / numBins;
for (int i = 0; i < minibatch; i++) {
int actualClassIdx = argmaxLabels.getInt(i);
for (int j = 0; j < nClasses; j++) {
double labelSubProb = absLabelSubProb.getDouble(i, j);
for (int k = 0; k < numBins; k++) {
double binLower = k * binSize;
double binUpper = (k + 1) * binSize;
if (k == numBins - 1)
binUpper = 1.0;
if (labelSubProb >= binLower && labelSubProb < binUpper) {
countsAllClasses[k]++;
if (j == actualClassIdx) {
countsByClass[j][k]++;
}
}
}
}
}
//Check residual plot - all classes/predictions
org.nd4j.evaluation.curves.Histogram rpAllClasses = ec.getResidualPlotAllClasses();
int[] rpAllClassesBinCounts = rpAllClasses.getBinCounts();
assertArrayEquals(countsAllClasses, rpAllClassesBinCounts);
//Check residual plot - split by labels for each class
// i.e., histogram of |label[x] - p(x)| only for those examples where label[x] == 1
for (int i = 0; i < nClasses; i++) {
org.nd4j.evaluation.curves.Histogram rpCurrClass = ec.getResidualPlot(i);
int[] rpCurrClassCounts = rpCurrClass.getBinCounts();
// System.out.println(Arrays.toString(countsByClass[i]));
// System.out.println(Arrays.toString(rpCurrClassCounts));
assertArrayEquals("Class: " + i, countsByClass[i], rpCurrClassCounts);
}
//Check overall probability distribution
int[] probCountsAllClasses = new int[numBins];
int[][] probCountsByClass = new int[nClasses][numBins]; //Histogram count of |label[x] - p(x)|; rows x are over classes
for (int i = 0; i < minibatch; i++) {
int actualClassIdx = argmaxLabels.getInt(i);
for (int j = 0; j < nClasses; j++) {
double prob = arr.getDouble(i, j);
for (int k = 0; k < numBins; k++) {
double binLower = k * binSize;
double binUpper = (k + 1) * binSize;
if (k == numBins - 1)
binUpper = 1.0;
if (prob >= binLower && prob < binUpper) {
probCountsAllClasses[k]++;
if (j == actualClassIdx) {
probCountsByClass[j][k]++;
}
}
}
}
}
org.nd4j.evaluation.curves.Histogram allProb = ec.getProbabilityHistogramAllClasses();
int[] actProbCountsAllClasses = allProb.getBinCounts();
assertArrayEquals(probCountsAllClasses, actProbCountsAllClasses);
//Check probability distribution - for each label class
for (int i = 0; i < nClasses; i++) {
org.nd4j.evaluation.curves.Histogram probCurrClass = ec.getProbabilityHistogram(i);
int[] actProbCurrClass = probCurrClass.getBinCounts();
assertArrayEquals(probCountsByClass[i], actProbCurrClass);
}
}
@Test
public void testSegmentation(){
for( int c : new int[]{4, 1}) { //c=1 should be treated as binary classification case
Nd4j.getRandom().setSeed(12345);
int mb = 3;
int h = 3;
int w = 2;
//NCHW
INDArray labels = Nd4j.create(DataType.FLOAT, mb, c, h, w);
Random r = new Random(12345);
for (int i = 0; i < mb; i++) {
for (int j = 0; j < h; j++) {
for (int k = 0; k < w; k++) {
if(c == 1){
labels.putScalar(i, 0, j, k, r.nextInt(2));
} else {
int classIdx = r.nextInt(c);
labels.putScalar(i, classIdx, j, k, 1.0);
}
}
}
}
INDArray predictions = Nd4j.rand(DataType.FLOAT, mb, c, h, w);
if(c > 1) {
DynamicCustomOp op = DynamicCustomOp.builder("softmax")
.addInputs(predictions)
.addOutputs(predictions)
.callInplace(true)
.addIntegerArguments(1) //Axis
.build();
Nd4j.exec(op);
}
EvaluationCalibration e2d = new EvaluationCalibration();
EvaluationCalibration e4d = new EvaluationCalibration();
e4d.eval(labels, predictions);
for (int i = 0; i < mb; i++) {
for (int j = 0; j < h; j++) {
for (int k = 0; k < w; k++) {
INDArray rowLabel = labels.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.point(j), NDArrayIndex.point(k));
INDArray rowPredictions = predictions.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.point(j), NDArrayIndex.point(k));
rowLabel = rowLabel.reshape(1, rowLabel.length());
rowPredictions = rowPredictions.reshape(1, rowLabel.length());
e2d.eval(rowLabel, rowPredictions);
}
}
}
assertEquals(e2d, e4d);
//NHWC, etc
INDArray lOrig = labels;
INDArray fOrig = predictions;
for (int i = 0; i < 4; i++) {
switch (i) {
case 0:
//CNHW - Never really used
labels = lOrig.permute(1, 0, 2, 3).dup();
predictions = fOrig.permute(1, 0, 2, 3).dup();
break;
case 1:
//NCHW
labels = lOrig;
predictions = fOrig;
break;
case 2:
//NHCW - Never really used...
labels = lOrig.permute(0, 2, 1, 3).dup();
predictions = fOrig.permute(0, 2, 1, 3).dup();
break;
case 3:
//NHWC
labels = lOrig.permute(0, 2, 3, 1).dup();
predictions = fOrig.permute(0, 2, 3, 1).dup();
break;
default:
throw new RuntimeException();
}
EvaluationCalibration e = new EvaluationCalibration();
e.setAxis(i);
e.eval(labels, predictions);
assertEquals(e2d, e);
}
}
}
@Test
public void testEvaluationCalibration3d() {
INDArray prediction = Nd4j.rand(DataType.FLOAT, 2, 5, 10);
INDArray label = Nd4j.rand(DataType.FLOAT, 2, 5, 10);
List<INDArray> rowsP = new ArrayList<>();
List<INDArray> rowsL = new ArrayList<>();
NdIndexIterator iter = new NdIndexIterator(2, 10);
while (iter.hasNext()) {
long[] idx = iter.next();
INDArrayIndex[] idxs = new INDArrayIndex[]{NDArrayIndex.point(idx[0]), NDArrayIndex.all(), NDArrayIndex.point(idx[1])};
rowsP.add(prediction.get(idxs));
rowsL.add(label.get(idxs));
}
INDArray p2d = Nd4j.vstack(rowsP);
INDArray l2d = Nd4j.vstack(rowsL);
EvaluationCalibration e3d = new EvaluationCalibration();
EvaluationCalibration e2d = new EvaluationCalibration();
e3d.eval(label, prediction);
e2d.eval(l2d, p2d);
System.out.println(e2d.stats());
assertEquals(e2d, e3d);
assertEquals(e2d.stats(), e3d.stats());
}
@Test
public void testEvaluationCalibration3dMasking() {
INDArray prediction = Nd4j.rand(DataType.FLOAT, 2, 3, 10);
INDArray label = Nd4j.rand(DataType.FLOAT, 2, 3, 10);
List<INDArray> rowsP = new ArrayList<>();
List<INDArray> rowsL = new ArrayList<>();
//Check "DL4J-style" 2d per timestep masking [minibatch, seqLength] mask shape
INDArray mask2d = Nd4j.randomBernoulli(0.5, 2, 10);
NdIndexIterator iter = new NdIndexIterator(2, 10);
while (iter.hasNext()) {
long[] idx = iter.next();
if(mask2d.getDouble(idx[0], idx[1]) != 0.0) {
INDArrayIndex[] idxs = new INDArrayIndex[]{NDArrayIndex.point(idx[0]), NDArrayIndex.all(), NDArrayIndex.point(idx[1])};
rowsP.add(prediction.get(idxs));
rowsL.add(label.get(idxs));
}
}
INDArray p2d = Nd4j.vstack(rowsP);
INDArray l2d = Nd4j.vstack(rowsL);
EvaluationCalibration e3d_m2d = new EvaluationCalibration();
EvaluationCalibration e2d_m2d = new EvaluationCalibration();
e3d_m2d.eval(label, prediction, mask2d);
e2d_m2d.eval(l2d, p2d);
assertEquals(e3d_m2d, e2d_m2d);
}
}