raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

415 lines
19 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <exceptions/cuda_exception.h>
#include <cublas_v2.h>
#include "../MmulHelper.h"
#include <specials_cuda.h>
namespace nd4j {
//////////////////////////////////////////////////////////////////////////////
// MXK x KxN = MxN
// C array must be in f order
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaGemm(const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
T2* B = reinterpret_cast<T2*>(const_cast<void*>(vB));
T3* C = reinterpret_cast<T3*>(vC);
__shared__ T3 alphaZ, betaZ;
__shared__ Nd4jLong strideArow, strideAcol, strideBrow, strideBcol;
const int row = blockIdx.y * blockDim.y + threadIdx.y;
const int col = blockIdx.x * blockDim.x + threadIdx.x;
if(row == 0 && col == 0) {
alphaZ = alpha;
betaZ = beta;
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
if(transB) { strideBrow = ldb; strideBcol = 1; } else { strideBrow = 1; strideBcol = ldb; }
}
__syncthreads();
T3 val = 0;
if (row < M && col < N)
for (int i = 0; i < K; i++)
val = val + A[row * strideArow + i * strideAcol] * B[i * strideBrow + col * strideBcol];
C[row + col * ldc] = alphaZ * val + betaZ * C[row + col * ldc];
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualGemm(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
usualCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, transB, M, N, K, alpha, vA, lda, vB, ldb, beta, vC, ldc);
}
//////////////////////////////////////////////////////////////////////////////
// MXN x N = M
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaGemv(const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
T2* X = reinterpret_cast<T2*>(const_cast<void*>(vX));
T3* Y = reinterpret_cast<T3*>(vY);
__shared__ T3 alphaZ, betaZ;
__shared__ Nd4jLong strideArow, strideAcol;
const int row = blockIdx.x * blockDim.x + threadIdx.x;
if(row == 0) {
alphaZ = alpha;
betaZ = beta;
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
}
__syncthreads();
T3 val = 0;
if (row < M)
for (int i = 0; i < N; i++)
val = val + A[row * strideArow + i * strideAcol] * X[i * incx];
Y[row * incy] = alphaZ * val + betaZ * Y[row * incy];
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualGemv(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
usualCudaGemv<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, M, N, alpha, vA, lda, vX, incx, beta, vY, incy);
}
//////////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaDot(const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
T1* X = reinterpret_cast<T1*>(const_cast<void*>(vX));
T2* Y = reinterpret_cast<T2*>(const_cast<void*>(vY));
T3* Z = reinterpret_cast<T3*>(vZ);
extern __shared__ char shmem[];
auto pairwiseMul = reinterpret_cast<T3*>(shmem);
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid < length)
pairwiseMul[tid] = X[tid * incx] * Y[tid * incy];
__syncthreads();
if(tid == 0) {
T3 sum = 0;
for(Nd4jLong i = 0; i < length; ++i)
sum = sum + pairwiseMul[i];
*Z = (T3)alpha * sum + (T3)beta * *Z;
}
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualDot(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
usualCudaDot<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, length*sizeof(T3) + 128, *stream>>>(length, alpha, vX, incx, vY, incy, beta, vZ);
}
//////////////////////////////////////////////////////////////////////////////
// MXK x KxN = MxN
NDArray* MmulHelper::mmulMxM(const NDArray* A, const NDArray* B, NDArray* C, double alpha, double beta, const char outOrder) {
if(A->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of A array is not equal 2 !");
if(B->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of B array is not equal 2 !");
auto M = A->sizeAt(0);
auto K = A->sizeAt(1);
auto N = B->sizeAt(1);
if(C != nullptr && C->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of C array is not equal 2 !");
if(B->sizeAt(0) != K)
throw std::runtime_error("MmulHelper::mmulMxM cuda: B array has wrong number of rows !");
if(C != nullptr && C->sizeAt(0) != M)
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of rows !");
if(C != nullptr && C->sizeAt(1) != N)
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of columns !");
if(C == nullptr)
C = new NDArray(outOrder, {M,N}, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext());
NDArray *pA(const_cast<NDArray*>(A)), *pB(const_cast<NDArray*>(B)), *pC(const_cast<NDArray*>(C));
std::vector<NDArray*> toDelete;
if(A->ews() != 1) {
pA = pA->dup('f');
toDelete.push_back(pA);
}
if(B->ews() != 1) {
pB = pB->dup('f');
toDelete.push_back(pB);
}
if(C->ews() != 1) {
pC = pC->dup('f');
toDelete.push_back(pC);
}
if(pC->ordering() != 'f') {
auto temp = pA;
pA = new NDArray(pB ->permute({1,0}));
pB = new NDArray(temp->permute({1,0}));
pC = new NDArray(pC ->permute({1,0}));
toDelete.push_back(pA);
toDelete.push_back(pB);
toDelete.push_back(pC);
M = pA->sizeAt(0);
K = pA->sizeAt(1);
N = pB->sizeAt(1);
}
const auto aOrder = pA->ordering();
const auto bOrder = pB->ordering();
const bool transA = aOrder != 'f';
const bool transB = bOrder != 'f';
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
const int lda = aOrder == 'f' ? M : K;
const int ldb = bOrder == 'f' ? K : N;
const int ldc = M; // cOrder == 'f' ? M : N;
const auto aType = pA->dataType();
const auto bType = pB->dataType();
const auto cType = pC->dataType();
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
auto stream = A->getContext()->getCudaStream();
auto status = cublasSetStream_v2(*handle, *stream);
if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC);
NDArray::prepareSpecialUse({pC}, {pA, pB});
// choose appropriate cuda gemm api depending on data types
if(ABC && aType == DataType::DOUBLE) {
status = cublasDgemm(*handle, transAblas, transBblas, M, N, K, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)pB->getSpecialBuffer(), ldb, &beta, (double*)pC->getSpecialBuffer(), ldc);
}
else if(ABC && aType == DataType::FLOAT32) {
float alphaF(alpha), betaF(beta);
status = cublasSgemm(*handle, transAblas, transBblas, M, N, K, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)pB->getSpecialBuffer(), ldb, &betaF, (float*)pC->getSpecialBuffer(), ldc);
}
else if(ABC && aType == DataType::HALF) {
printf("!!!!!!!!\n");
float16 alphaH(alpha), betaH(beta);
status = cublasHgemm(*handle, transAblas, transBblas, M, N, K, &alphaH.data, (__half*)pA->getSpecialBuffer(), lda, (__half*)pB->getSpecialBuffer(), ldb, &betaH.data, (__half*)pC->getSpecialBuffer(), ldc);
}
else if(AB && aType == DataType::INT8 && cType == DataType::FLOAT32) {
float alphaF(alpha), betaF(beta);
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_8I, lda, pB->getSpecialBuffer(), CUDA_R_8I, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
}
else if(AB && aType == DataType::HALF && cType == DataType::FLOAT32) {
float alphaF(alpha), betaF(beta);
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_16F, lda, pB->getSpecialBuffer(), CUDA_R_16F, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
}
else {
dim3 threadsPerBlock(N, M);
dim3 blocksPerGrid(1, 1);
if (M*N > 512){
threadsPerBlock.x = threadsPerBlock.y = 512;
blocksPerGrid.x = math::nd4j_ceil<double, int>(static_cast<double>(N) / threadsPerBlock.x); // cols
blocksPerGrid.y = math::nd4j_ceil<double, int>(static_cast<double>(M) / threadsPerBlock.y); // rows
}
//BUILD_TRIPLE_SELECTOR(aType, bType, cType, usualGemm, (blocksPerGrid, threadsPerBlock, stream, transA, transB, M, N, K, alpha, pA->getSpecialBuffer(), lda, pB->getSpecialBuffer(), ldb, beta, pC->getSpecialBuffer(), ldc), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemm, (blocksPerGrid, threadsPerBlock, stream, transA, transB, M, N, K, alpha, pA->getSpecialBuffer(), lda, pB->getSpecialBuffer(), ldb, beta, pC->getSpecialBuffer(), ldc), NUMERIC_TYPES)
}
if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult);
NDArray::registerSpecialUse({pC}, {pA, pB});
if(C->ews() != 1)
C->assign(pC);
for(int i = toDelete.size() - 1; i >= 0; --i)
delete toDelete[i];
return C;
}
////////////////////////////////////////////////////////////////////////////
// MXN x N = M
NDArray* MmulHelper::mmulMxV(const NDArray* A, const NDArray* X, nd4j::NDArray* Y, const double alpha, const double beta, const char outOrder) {
int xLenDim, yLenDim(0);
if(A->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxV cuda: rank of A array is not equal 2 !");
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
throw std::runtime_error("MmulHelper::mmulMxV cuda: X array must be vector !");
const auto M = A->sizeAt(0);
const auto N = A->sizeAt(1);
if(Y != nullptr && !shape::isCommonVector(Y->getShapeInfo(), yLenDim))
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array must be vector !");
if(X->lengthOf() != N)
throw std::runtime_error("MmulHelper::mmulMxV cuda: X vector has wrong length !");
if(Y != nullptr && Y->lengthOf() != M)
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array has wrong length !");
if(Y == nullptr)
Y = new NDArray(outOrder, {M}, DataTypeUtils::pickPairwiseResultType(A->dataType(), X->dataType()), A->getContext());
NDArray *pA(const_cast<NDArray*>(A));
if(A->ews() != 1)
pA = pA->dup('f');
const bool transA = pA->ordering() == 'c';
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
int lda, lta;
if(transA) { lda = N; lta = M; }
else { lda = M; lta = N; }
const int incx = X->stridesOf()[xLenDim];
const int incy = Y->stridesOf()[yLenDim];
const auto aType = pA->dataType();
const auto xType = X->dataType();
const auto yType = Y->dataType();
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
auto stream = A->getContext()->getCudaStream();
auto status = cublasSetStream_v2(*handle, *stream);
if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
const bool AX(aType == xType), AY(aType == yType), AXY(AX && AY);
NDArray::prepareSpecialUse({Y}, {pA, X});
// choose appropriate cuda gemm api depending on data types
if(AXY && aType == DataType::DOUBLE) {
status = cublasDgemv(*handle, transAblas, lda, lta, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)X->getSpecialBuffer(), incx, &beta, (double*)Y->getSpecialBuffer(), incy);
}
else if(AXY && aType == DataType::FLOAT32) {
float alphaF(alpha), betaF(beta);
status = cublasSgemv(*handle, transAblas, lda, lta, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)X->getSpecialBuffer(), incx, &betaF, (float*)Y->getSpecialBuffer(), incy);
}
else {
dim3 threadsPerBlock(M);
dim3 blocksPerGrid(1);
if (M > 512){
threadsPerBlock.x = 512;
blocksPerGrid.x = math::nd4j_ceil<double, int>(static_cast<double>(M) / threadsPerBlock.x); // rows
}
//BUILD_TRIPLE_SELECTOR(aType, xType, yType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, transA, M, N, alpha, pA->getSpecialBuffer(), lda, X->getSpecialBuffer(), incx, beta, Y->getSpecialBuffer(), incy), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(xType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, transA, M, N, alpha, pA->getSpecialBuffer(), lda, X->getSpecialBuffer(), incx, beta, Y->getSpecialBuffer(), incy), NUMERIC_TYPES)
}
if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult);
NDArray::registerSpecialUse({Y}, {pA, X});
if(pA != A)
delete pA;
return Y;
}
////////////////////////////////////////////////////////////////////////////
// (X * Y) = Z[0]
NDArray* MmulHelper::dot(const NDArray* X, const NDArray* Y, nd4j::NDArray* Z, const double alpha, const double beta) {
int xLenDim(0), yLenDim(0);
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
throw std::runtime_error("MmulHelper::dot cuda: X array must be vector !");
if(!shape::isCommonVector(Y->getShapeInfo(), yLenDim))
throw std::runtime_error("MmulHelper::dot cuda: Y array must be vector !");
if(Z != nullptr && !Z->isScalar())
throw std::runtime_error("MmulHelper::dot cuda: Z array must be scalar !");
const auto length = X->lengthOf();
if(Y->lengthOf() != length)
throw std::runtime_error("MmulHelper::dot cuda: lengths of input vectors are different !");
if(Z == nullptr)
Z = new NDArray(DataTypeUtils::pickPairwiseResultType(X->dataType(), Y->dataType()), X->getContext());
const Nd4jLong incx = X->stridesOf()[xLenDim];
const Nd4jLong incy = Y->stridesOf()[yLenDim];
const auto xType = X->dataType();
const auto yType = Y->dataType();
const auto zType = Z->dataType();
if(!X->isActualOnDeviceSide()) X->syncToDevice();
if(!Y->isActualOnDeviceSide()) Y->syncToDevice();
if(!Z->isActualOnDeviceSide()) Z->syncToDevice();
cudaStream_t* stream = X->getContext()->getCudaStream();
dim3 threadsPerBlock(512);
dim3 blocksPerGrid(1);
if (length > 512)
threadsPerBlock.x = math::nd4j_ceil<double, int>(static_cast<double>(length) / 512);
NDArray::prepareSpecialUse({Z}, {X, Y});
//BUILD_TRIPLE_SELECTOR(xType, yType, zType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(xType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES)
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0) throw cuda_exception::build("MmulHelper::dot cuda failed !", cudaResult);
NDArray::registerSpecialUse({Z}, {X, Y});
return Z;
}
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vB, const int incx, const double beta, void* vC, const int incy), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
}