341 lines
18 KiB
C++
341 lines
18 KiB
C++
/* ******************************************************************************
|
||
*
|
||
*
|
||
* This program and the accompanying materials are made available under the
|
||
* terms of the Apache License, Version 2.0 which is available at
|
||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
*
|
||
* See the NOTICE file distributed with this work for additional
|
||
* information regarding copyright ownership.
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
* License for the specific language governing permissions and limitations
|
||
* under the License.
|
||
*
|
||
* SPDX-License-Identifier: Apache-2.0
|
||
******************************************************************************/
|
||
|
||
//
|
||
// @author Yurii Shyrma (iuriish@yahoo.com)
|
||
//
|
||
|
||
#include <system/op_boilerplate.h>
|
||
#if NOT_EXCLUDED(OP_lstmLayerCell)
|
||
|
||
#include <ops/declarable/CustomOperations.h>
|
||
#include<ops/declarable/helpers/lstmLayer.h>
|
||
|
||
namespace sd {
|
||
namespace ops {
|
||
|
||
|
||
//////////////////////////////////////////////////////////////////////////
|
||
CUSTOM_OP_IMPL(lstmLayerCell, 5, 2, false, 1, 3) {
|
||
|
||
// equations (no peephole connections)
|
||
// it = σ(Wxi * xt + Wri * ht-1 + bi)
|
||
// ft = σ(Wxf * xt + Wrf * ht-1 + bf)
|
||
// c't = tanh(Wxc * xt + Wrc * ht-1 + bc)
|
||
// ct = ft ◦ ct-1 + it ◦ c't
|
||
// ot = σ(Wxo * xt + Wro * ht-1 + bo)
|
||
// ht = ot ◦ tanh(ct)
|
||
|
||
// equations (peephole connections are present)
|
||
// it = σ(Wxi * xt + Wri * ht-1 + Wpi ◦ ct-1 + bi)
|
||
// ft = σ(Wxf * xt + Wrf * ht-1 + Wpf ◦ ct-1 + bf)
|
||
// c't = tanh(Wxc * xt + Wrc * ht-1 + bc)
|
||
// ct = clip(ft ◦ ct-1 + it ◦ c't)
|
||
// ot = σ(Wxo * xt + Wro * ht-1 + Wpo ◦ ct + bo)
|
||
// ht = ot ◦ tanh(ct)
|
||
|
||
// notations:
|
||
// bS - batch size
|
||
// nIn - input size
|
||
// nOut - output size (hidden size)
|
||
|
||
// INPUTS:
|
||
// input x: [bS, nIn] or [nIn]
|
||
// input weights Wx: [nIn, 4*nOut]
|
||
// recurrent weights Wr: [nOut, 4*nOut]
|
||
// initial (previous) output hI: [bS, nOut] or [nOut]
|
||
// initial (previous) cell state cI: [bS, nOut] or [nOut]
|
||
// biases b (optional): [4*nOut]
|
||
// peephole weights Wp (optional): [3*nOut]
|
||
|
||
// OUTPUTS:
|
||
// current output h: [bS, nOut] or [nOut]
|
||
// current cell state c: [bS, nOut] or [nOut]
|
||
|
||
// !!! dimension 4*nOut implies order it, ft, c't, ot
|
||
// !!! dimension 3*nOut implies order it, ft, ot
|
||
|
||
// integer numbers corresponding to activations: 0=tanh, 1=relu, 2=sigmoid, 3=affine, 4=leaky relu, 5= thresholded relu, 6=scaled tanh, 7=hard sigmoid, 8=ELU, 9=softsign, 10=softplus
|
||
const auto gateAct = INT_ARG(0); // activation for input (i), forget (f) and output (o) gates
|
||
const auto cellAct = INT_ARG(1); // activation for cell state (c)
|
||
const auto outAct = INT_ARG(2); // activation for output (h)
|
||
|
||
const auto hasBiases = B_ARG(0); // indicates whether biases array is provided
|
||
const auto hasPH = B_ARG(1); // indicates whether peephole connections are present
|
||
|
||
const auto gateActHasAlpha = gateAct == 3 || gateAct == 4 || gateAct == 5 || gateAct == 6 || gateAct == 8;
|
||
const auto cellActHasAlpha = cellAct == 3 || cellAct == 4 || cellAct == 5 || cellAct == 6 || cellAct == 8;
|
||
const auto outActHasAlpha = outAct == 3 || outAct == 4 || outAct == 5 || outAct == 6 || outAct == 8;
|
||
const auto gateActHasBeta = gateAct == 3 || gateAct == 6;
|
||
const auto cellActHasBeta = cellAct == 3 || cellAct == 6;
|
||
const auto outActHasBeta = outAct == 3 || outAct == 6;
|
||
|
||
uint count = 1;
|
||
const auto cellClip = T_ARG(0); // cell clipping value, if it = 0 then do not apply clipping
|
||
const auto gateAlpha = gateActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto gateBeta = gateActHasBeta ? T_ARG(count++) : 0;
|
||
const auto cellAlpha = cellActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto cellBeta = cellActHasBeta ? T_ARG(count++) : 0;
|
||
const auto outAlpha = outActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto outBeta = outActHasBeta ? T_ARG(count++) : 0;
|
||
|
||
count = 3;
|
||
const auto x = INPUT_VARIABLE(0); // input
|
||
const auto Wx = INPUT_VARIABLE(1); // input weights
|
||
const auto Wr = INPUT_VARIABLE(2); // recurrent weights
|
||
const auto b = hasBiases ? INPUT_VARIABLE(count++) : nullptr; // biases
|
||
const auto hI = INPUT_VARIABLE(count++); // initial output
|
||
const auto cI = INPUT_VARIABLE(count++); // initial cell state
|
||
const auto Wp = hasPH ? INPUT_VARIABLE(count) : nullptr; // peephole weights
|
||
|
||
REQUIRE_TRUE(cellClip >= 0 , 0, "LSTM_LAYER_CELL operation: cell clipping value should be nonnegative (>=0) !");
|
||
|
||
auto h = OUTPUT_VARIABLE(0);
|
||
auto c = OUTPUT_VARIABLE(1);
|
||
|
||
// evaluate dimensions
|
||
const Nd4jLong bS = x->rankOf() == 1 ? 0 : x->sizeAt(0);
|
||
const Nd4jLong nIn = x->sizeAt(-1);
|
||
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
|
||
|
||
// inputs validations
|
||
// Wx validation
|
||
if(Wx->rankOf() != 2 || Wx->sizeAt(0) != nIn)
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL operation: wrong shape of input weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({nIn, 4*nOut}).c_str(), ShapeUtils::shapeAsString(Wx).c_str());
|
||
// Wr validation
|
||
if(Wr->rankOf() != 2 || Wr->sizeAt(0) != nOut || Wr->sizeAt(1) != 4*nOut)
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL operation: wrong shape of recurrent weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({nOut, 4*nOut}).c_str(), ShapeUtils::shapeAsString(Wr).c_str());
|
||
// initial output/cell validation
|
||
std::vector<Nd4jLong> exphIcIShape = x->rankOf() == 1 ? std::vector<Nd4jLong>{nOut} : std::vector<Nd4jLong>{bS, nOut};
|
||
REQUIRE_TRUE(hI->isSameShape(exphIcIShape), 0, "LSTM_LAYER_CELL operation: wrong shape of initial output, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(exphIcIShape).c_str(), ShapeUtils::shapeAsString(hI).c_str());
|
||
REQUIRE_TRUE(cI->isSameShape(exphIcIShape), 0, "LSTM_LAYER_CELL operation: wrong shape of initial cell state, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(exphIcIShape).c_str(), ShapeUtils::shapeAsString(cI).c_str());
|
||
// biases validation
|
||
if(b != nullptr && (b->rankOf() != 1 || b->sizeAt(0) != 4*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL operation: wrong shape of biases, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({4*nOut}).c_str(), ShapeUtils::shapeAsString(b).c_str());
|
||
// peephole weights validation
|
||
if(Wp != nullptr && (Wp->rankOf() != 1 || Wp->sizeAt(0) != 3*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL operation: wrong shape of peephole weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({3*nOut}).c_str(), ShapeUtils::shapeAsString(Wp).c_str());
|
||
|
||
std::vector<float> params = {static_cast<float>(0)/*ignore*/, static_cast<float>(0)/*ignore*/, static_cast<float>(cellClip),
|
||
static_cast<float>(gateAct), static_cast<float>(gateAlpha), static_cast<float>(gateBeta),
|
||
static_cast<float>(cellAct), static_cast<float>(cellAlpha), static_cast<float>(cellBeta),
|
||
static_cast<float>(outAct), static_cast<float>(outAlpha), static_cast<float>(outBeta)};
|
||
|
||
helpers::lstmLayerCell(x, Wx, Wr, b, hI, cI, Wp, params, h, c);
|
||
|
||
return Status::OK();
|
||
}
|
||
|
||
DECLARE_TYPES(lstmLayerCell) {
|
||
getOpDescriptor()
|
||
->setAllowedInputTypes(sd::DataType::ANY)
|
||
->setAllowedOutputTypes({ALL_FLOATS});
|
||
}
|
||
|
||
|
||
DECLARE_SHAPE_FN(lstmLayerCell) {
|
||
|
||
const auto hasBiases = B_ARG(0); // indicates whether biases array is provided
|
||
|
||
uint count = hasBiases ? 4 : 3;
|
||
const auto hI = INPUT_VARIABLE(count++); // initial output
|
||
const auto cI = INPUT_VARIABLE(count); // initial cell state
|
||
|
||
return new ShapeList({hI->shapeInfo(), cI->shapeInfo()});
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////////
|
||
CUSTOM_OP_IMPL(lstmLayerCellBp, 7, 5, false, 1, 3) {
|
||
|
||
// equations (no peephole connections)
|
||
// it = σ(Wxi * xt + Wri * ht-1 + bi)
|
||
// ft = σ(Wxf * xt + Wrf * ht-1 + bf)
|
||
// c't = tanh(Wxc * xt + Wrc * ht-1 + bc)
|
||
// ct = ft ◦ ct-1 + it ◦ c't
|
||
// ot = σ(Wxo * xt + Wro * ht-1 + bo)
|
||
// ht = ot ◦ tanh(ct)
|
||
|
||
// equations (peephole connections are present)
|
||
// it = σ(Wxi * xt + Wri * ht-1 + Wpi ◦ ct-1 + bi)
|
||
// ft = σ(Wxf * xt + Wrf * ht-1 + Wpf ◦ ct-1 + bf)
|
||
// c't = tanh(Wxc * xt + Wrc * ht-1 + bc)
|
||
// ct = clip(ft ◦ ct-1 + it ◦ c't)
|
||
// ot = σ(Wxo * xt + Wro * ht-1 + Wpo ◦ ct + bo)
|
||
// ht = ot ◦ tanh(ct)
|
||
|
||
// notations:
|
||
// bS - batch size
|
||
// nIn - input size
|
||
// nOut - output size (hidden size)
|
||
|
||
// INPUTS:
|
||
// input x: [bS, nIn] or [nIn]
|
||
// input weights Wx: [nIn, 4*nOut]
|
||
// recurrent weights Wr: [nOut, 4*nOut]
|
||
// initial (previous) output hI: [bS, nOut] or [nOut]
|
||
// initial (previous) cell state cI: [bS, nOut] or [nOut]
|
||
// gradient wrt output dLdh: [bS, nOut] or [nOut]
|
||
// gradient wrt cell state dLdc: [bS, nOut] or [nOut]
|
||
// peephole weights Wp (optional): [3*nOut]
|
||
// biases b (optional): [4*nOut]
|
||
|
||
// OUTPUTS:
|
||
// gradient wrt x dLdx: [bS, nIn] or [nIn]
|
||
// gradient wrt Wx dLdWx: [nIn, 4*nOut]
|
||
// gradient wrt Wr dLdWr: [nOut, 4*nOut]
|
||
// gradient wrt hI dLdhI: [bS, nOut] or [nOut]
|
||
// gradient wrt cI dLdcI: [bS, nOut] or [nOut]
|
||
// gradient wrt b dLdb (optional): [4*nOut]
|
||
// gradient wrt Wp dLdWp (optional): [3*nOut]
|
||
|
||
|
||
// !!! dimension 4*nOut implies order it, ft, c't, ot
|
||
// !!! dimension 3*nOut implies order it, ft, ot
|
||
|
||
// integer numbers corresponding to activations: 0=tanh, 1=relu, 2=sigmoid, 3=affine, 4=leaky relu, 5= thresholded relu, 6=scaled tanh, 7=hard sigmoid, 8=ELU, 9=softsign, 10=softplus
|
||
const auto gateAct = INT_ARG(0); // activation for input (i), forget (f) and output (o) gates
|
||
const auto cellAct = INT_ARG(1); // activation for cell state (c)
|
||
const auto outAct = INT_ARG(2); // activation for output (h)
|
||
|
||
const auto hasBiases = B_ARG(0); // indicates whether biases array is provided
|
||
const auto hasPH = B_ARG(1); // indicates whether peephole connections are present
|
||
|
||
const auto gateActHasAlpha = gateAct == 3 || gateAct == 4 || gateAct == 5 || gateAct == 6 || gateAct == 8;
|
||
const auto cellActHasAlpha = cellAct == 3 || cellAct == 4 || cellAct == 5 || cellAct == 6 || cellAct == 8;
|
||
const auto outActHasAlpha = outAct == 3 || outAct == 4 || outAct == 5 || outAct == 6 || outAct == 8;
|
||
const auto gateActHasBeta = gateAct == 3 || gateAct == 6;
|
||
const auto cellActHasBeta = cellAct == 3 || cellAct == 6;
|
||
const auto outActHasBeta = outAct == 3 || outAct == 6;
|
||
|
||
uint count = 1;
|
||
const auto cellClip = T_ARG(0); // cell clipping value, if it = 0 then do not apply clipping
|
||
const auto gateAlpha = gateActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto gateBeta = gateActHasBeta ? T_ARG(count++) : 0;
|
||
const auto cellAlpha = cellActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto cellBeta = cellActHasBeta ? T_ARG(count++) : 0;
|
||
const auto outAlpha = outActHasAlpha ? T_ARG(count++) : 0;
|
||
const auto outBeta = outActHasBeta ? T_ARG(count++) : 0;
|
||
|
||
count = 3;
|
||
const auto x = INPUT_VARIABLE(0); // input
|
||
const auto Wx = INPUT_VARIABLE(1); // input weights
|
||
const auto Wr = INPUT_VARIABLE(2); // recurrent weights
|
||
const auto b = hasBiases ? INPUT_VARIABLE(count++) : nullptr; // biases
|
||
const auto hI = INPUT_VARIABLE(count++); // initial output
|
||
const auto cI = INPUT_VARIABLE(count++); // initial cell state
|
||
const auto Wp = hasPH ? INPUT_VARIABLE(count++) : nullptr; // peephole weights
|
||
const auto dLdh = INPUT_VARIABLE(count); // gradient wrt output
|
||
|
||
REQUIRE_TRUE(cellClip >= 0 , 0, "LSTM_LAYER_CELL_BP operation: cell clipping value should be nonnegative (>=0) !");
|
||
|
||
count = 3;
|
||
auto dLdx = OUTPUT_VARIABLE(0);
|
||
auto dLdWx = OUTPUT_VARIABLE(1);
|
||
auto dLdWr = OUTPUT_VARIABLE(2);
|
||
auto dLdb = hasBiases ? OUTPUT_VARIABLE(count++) : nullptr;
|
||
auto dLdhI = OUTPUT_VARIABLE(count++);
|
||
auto dLdcI = OUTPUT_VARIABLE(count++);
|
||
auto dLdWp = hasPH ? OUTPUT_VARIABLE(count) : nullptr;
|
||
|
||
// evaluate dimensions
|
||
const Nd4jLong bS = x->rankOf() == 1 ? 0 : x->sizeAt(0);
|
||
const Nd4jLong nIn = x->sizeAt(-1);
|
||
const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
|
||
|
||
// inputs validations
|
||
// Wx validation
|
||
if(Wx->rankOf() != 2 || Wx->sizeAt(0) != nIn)
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of input weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({nIn, 4*nOut}).c_str(), ShapeUtils::shapeAsString(Wx).c_str());
|
||
// Wr validation
|
||
if(Wr->rankOf() != 2 || Wr->sizeAt(0) != nOut || Wr->sizeAt(1) != 4*nOut)
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of recurrent weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({nOut, 4*nOut}).c_str(), ShapeUtils::shapeAsString(Wr).c_str());
|
||
// initial output/cell validation
|
||
std::vector<Nd4jLong> exphIcIShape = x->rankOf() == 1 ? std::vector<Nd4jLong>{nOut} : std::vector<Nd4jLong>{bS, nOut};
|
||
REQUIRE_TRUE(hI->isSameShape(exphIcIShape), 0, "LSTM_LAYER_CELL_BP operation: wrong shape of initial output, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(exphIcIShape).c_str(), ShapeUtils::shapeAsString(hI).c_str());
|
||
REQUIRE_TRUE(cI->isSameShape(exphIcIShape), 0, "LSTM_LAYER_CELL_BP operation: wrong shape of initial cell state, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(exphIcIShape).c_str(), ShapeUtils::shapeAsString(cI).c_str());
|
||
REQUIRE_TRUE(dLdh->isSameShape(exphIcIShape), 0, "LSTM_LAYER_CELL_BP operation: wrong shape of dLdh gradient, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(exphIcIShape).c_str(), ShapeUtils::shapeAsString(dLdh).c_str());
|
||
// biases validation
|
||
if(b != nullptr && (b->rankOf() != 1 || b->sizeAt(0) != 4*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of biases, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({4*nOut}).c_str(), ShapeUtils::shapeAsString(b).c_str());
|
||
if(dLdb != nullptr && (dLdb->rankOf() != 1 || dLdb->sizeAt(0) != 4*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of dLdb gradient, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({4*nOut}).c_str(), ShapeUtils::shapeAsString(dLdb).c_str());
|
||
// peephole weights validation
|
||
if(Wp != nullptr && (Wp->rankOf() != 1 || Wp->sizeAt(0) != 3*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of peephole weights, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({3*nOut}).c_str(), ShapeUtils::shapeAsString(Wp).c_str());
|
||
if(dLdWp != nullptr && (dLdWp->rankOf() != 1 || dLdWp->sizeAt(0) != 3*nOut))
|
||
REQUIRE_TRUE(false, 0, "LSTM_LAYER_CELL_BP operation: wrong shape of dLdWp gradient, expected is %s, but got %s instead !", ShapeUtils::shapeAsString({3*nOut}).c_str(), ShapeUtils::shapeAsString(dLdWp).c_str());
|
||
|
||
|
||
std::vector<float> params = {static_cast<float>(0)/*ignore*/, static_cast<float>(0)/*ignore*/, static_cast<float>(cellClip),
|
||
static_cast<float>(gateAct), static_cast<float>(gateAlpha), static_cast<float>(gateBeta),
|
||
static_cast<float>(cellAct), static_cast<float>(cellAlpha), static_cast<float>(cellBeta),
|
||
static_cast<float>(outAct), static_cast<float>(outAlpha), static_cast<float>(outBeta)};
|
||
|
||
std::vector<Nd4jLong> zShape = x->rankOf() == 1 ? std::vector<Nd4jLong>({4*nOut}) : std::vector<Nd4jLong>({bS, 4*nOut});
|
||
|
||
NDArray z(x->ordering(), zShape, x->dataType(), block.launchContext());
|
||
NDArray a = z.ulike();
|
||
NDArray h = cI->ulike();
|
||
NDArray c = cI->ulike();
|
||
|
||
helpers::lstmLayerCell(x,Wx, Wr, b, hI, cI, Wp, params, &z, &a, &h, &c);
|
||
|
||
helpers::lstmLayerCellBp(x, Wx, Wr, b, hI, cI, Wp, dLdh, nullptr, nullptr, &z, &a, &c, params, dLdx, dLdWx, dLdWr, dLdhI, dLdcI, dLdb, dLdWp);
|
||
|
||
return Status::OK();
|
||
}
|
||
|
||
DECLARE_TYPES(lstmLayerCellBp) {
|
||
getOpDescriptor()
|
||
->setAllowedInputTypes(sd::DataType::ANY)
|
||
->setAllowedOutputTypes({ALL_FLOATS});
|
||
}
|
||
|
||
|
||
DECLARE_SHAPE_FN(lstmLayerCellBp) {
|
||
|
||
const auto hasBiases = B_ARG(0); // indicates whether biases array is provided
|
||
const auto hasPH = B_ARG(1); // indicates whether peephole connections are present
|
||
|
||
uint count = 3;
|
||
const auto x = INPUT_VARIABLE(0); // input
|
||
const auto Wx = INPUT_VARIABLE(1); // input weights
|
||
const auto Wr = INPUT_VARIABLE(2); // recurrent weights
|
||
const auto b = hasBiases ? INPUT_VARIABLE(count++) : nullptr; // biases
|
||
const auto hI = INPUT_VARIABLE(count++); // initial output
|
||
const auto cI = INPUT_VARIABLE(count++); // initial cell state
|
||
const auto Wp = hasPH ? INPUT_VARIABLE(count) : nullptr; // peephole weights
|
||
|
||
auto shapes = SHAPELIST(x->shapeInfo(), Wx->shapeInfo(), Wr->shapeInfo());
|
||
|
||
if(b != nullptr)
|
||
shapes->push_back(b->shapeInfo());
|
||
|
||
shapes->push_back(hI->shapeInfo());
|
||
shapes->push_back(cI->shapeInfo());
|
||
|
||
if(Wp != nullptr)
|
||
shapes->push_back(Wp->shapeInfo());
|
||
|
||
return shapes;
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
#endif |