cavis/libnd4j/include/ops/declarable/generic/blas/tensormmul.cpp

196 lines
6.8 KiB
C++

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <system/op_boilerplate.h>
#if NOT_EXCLUDED(OP_tensormmul)
#include <numeric>
#include <helpers/ShapeUtils.h>
#include <ops/declarable/CustomOperations.h>
#include <helpers/MmulHelper.h>
namespace sd {
namespace ops {
////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(tensormmul, 2, 1, false, 0, -1) {
auto a = INPUT_VARIABLE(0);
auto b = INPUT_VARIABLE(1);
auto c = OUTPUT_VARIABLE(0);
REQUIRE_TRUE(a->dataType() == b->dataType(), 0, "tensormmul: A, B and C data types must be the same");
// building axes
int axe0_size = INT_ARG(0);
int axe1_size = INT_ARG(axe0_size+1);
std::vector<int> axes_0(axe0_size), axes_1(axe1_size);
for (int e = 0; e < axe0_size; e++)
axes_0[e] = (int)INT_ARG(e + 1);
for (int e = 0; e < axe1_size; e++)
axes_1[e] = (int)INT_ARG(e + axe0_size + 2);
nd4j_verbose("axe0: %i; axe1: %i;\n", axes_0.size(), axes_1.size());
MmulHelper::tensorDot(a, b, c, axes_0, axes_1);
return Status::OK();
}
DECLARE_SYN(tensordot, tensormmul);
////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(tensormmul) {
auto aShapeInfo = inputShape->at(0);
auto bShapeInfo = inputShape->at(1);
REQUIRE_TRUE(ArrayOptions::dataType(aShapeInfo) == ArrayOptions::dataType(bShapeInfo), 0, "tensormmul: A and B data types must be the same");
// building axes
int axe0_size = INT_ARG(0);
int axe1_size = INT_ARG(axe0_size+1);
std::vector<int> axes_0(axe0_size), axes_1(axe1_size);
for (int e = 0; e < axe0_size; e++)
axes_0[e] = (int) INT_ARG(e+1);
for (int e = 0; e < axe1_size; e++)
axes_1[e] = (int) INT_ARG(e + axe0_size + 2);
// evaluate shapes
std::vector<int> permutAt, permutBt;
std::vector<Nd4jLong> shapeAt, shapeBt;
auto outShape = sd::ShapeUtils::evalShapeForTensorDot(aShapeInfo, bShapeInfo, axes_0, axes_1, permutAt, permutBt, shapeAt, shapeBt);
return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(aShapeInfo), 'c', outShape)));
}
////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(tensormmul) {
getOpDescriptor()
->setAllowedInputTypes(0, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF})
->setAllowedInputTypes(1, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF})
->setAllowedOutputTypes(0, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF});
}
////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(tensormmul_bp, 3, 2, false, 0, -1) {
auto A = INPUT_VARIABLE(0);
auto B = INPUT_VARIABLE(1);
auto dLdC = INPUT_VARIABLE(2);
auto dLdA = OUTPUT_VARIABLE(0);
auto dLdB = OUTPUT_VARIABLE(1);
REQUIRE_TRUE( (A->dataType() == B->dataType() && (dLdC->dataType() == A->dataType())), 0, "tensormmul_bp: A, B and dLdC data types must be the same");
int axe0Size = INT_ARG(0);
int axe1Size = INT_ARG(axe0Size + 1);
auto Arank = A->rankOf();
auto Brank = B->rankOf();
auto dLdCrank = dLdC->rankOf();
REQUIRE_TRUE((Arank >= axe0Size), 0, "tensormmul_bp: A rank must be the higher or same as input axes 0");
REQUIRE_TRUE((Brank >= axe1Size), 0, "tensormmul_bp: B rank must be the higher or same as input axes 1");
// building axes
std::vector<int> axes0(axe0Size), axes1(axe1Size);
for (uint e = 0; e < axe0Size; e++)
axes0[e] = (int)INT_ARG(e + 1);
for (uint e = 0; e < axe1Size; e++)
axes1[e] = (int)INT_ARG(e + axe0Size + 2);
std::vector<int> permutAt, permutBt;
std::vector<Nd4jLong> shapeAt, shapeBt;
ShapeUtils::evalShapeForTensorDot(A, B, axes0, axes1, permutAt, permutBt, shapeAt, shapeBt);
// special case for scalar value
if (dLdC->isScalar()) {
dLdA->assign((*dLdC) * *B);
dLdB->assign((*dLdC) * *A);
return Status::OK();
}
std::vector<int> axesA = ShapeUtils::evalDimsToExclude(Arank, axes0);
std::vector<int> axesB = ShapeUtils::evalDimsToExclude(Brank, axes1);
std::vector<int> axesAdLdC, axesBdLdC;
if (dLdCrank > 1) {
axesAdLdC.resize(axesA.size());
std::iota(axesAdLdC.begin(), axesAdLdC.end(), 0);
axesBdLdC = ShapeUtils::evalDimsToExclude(dLdCrank, axesAdLdC);
}
else {
axesAdLdC.push_back(0);
axesBdLdC.push_back(0);
}
// calculate dLdA
MmulHelper::tensorDot(dLdC, B, dLdA, axesBdLdC, axesB, permutAt);
// calculate dLdB
MmulHelper::tensorDot(A, dLdC, dLdB, axesA, axesAdLdC, permutBt);
return Status::OK();
}
////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(tensormmul_bp) {
auto aShapeInfo = inputShape->at(0);
auto bShapeInfo = inputShape->at(1);
auto dLShapeInfo = inputShape->at(2);
REQUIRE_TRUE((ArrayOptions::dataType(aShapeInfo) == ArrayOptions::dataType(bShapeInfo) &&
(ArrayOptions::dataType(dLShapeInfo) == ArrayOptions::dataType(aShapeInfo))), 0, "tensormmul_bp: A, B and dLdC data types must be the same");
Nd4jLong* dLdAShapeInfo = nullptr;
Nd4jLong* dLdBShapeInfo = nullptr;
COPY_SHAPE(aShapeInfo, dLdAShapeInfo);
COPY_SHAPE(bShapeInfo, dLdBShapeInfo);
return SHAPELIST(CONSTANT(dLdAShapeInfo), CONSTANT(dLdBShapeInfo));
}
////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(tensormmul_bp) {
getOpDescriptor()
->setAllowedInputTypes(0, { DataType::FLOAT32, DataType::DOUBLE, DataType::HALF }) // maybe better ALL_FLOATS
->setAllowedInputTypes(1, { DataType::FLOAT32, DataType::DOUBLE, DataType::HALF })
->setAllowedInputTypes(2, { DataType::FLOAT32, DataType::DOUBLE, DataType::HALF })
->setAllowedOutputTypes(0, { DataType::FLOAT32, DataType::DOUBLE, DataType::HALF })
->setAllowedOutputTypes(1, { DataType::FLOAT32, DataType::DOUBLE, DataType::HALF });
}
}
}
#endif