2021-03-20 19:06:24 +09:00

258 lines
13 KiB
Java

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.regressiontest;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.TestUtils;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.dropout.Dropout;
import org.deeplearning4j.nn.conf.graph.LayerVertex;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInitDistribution;
import org.deeplearning4j.nn.weights.WeightInitRelu;
import org.deeplearning4j.nn.weights.WeightInitXavier;
import org.deeplearning4j.util.ModelSerializer;
import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;
import org.nd4j.common.tests.tags.NativeTag;
import org.nd4j.common.tests.tags.TagNames;
import org.nd4j.linalg.activations.impl.ActivationLReLU;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.learning.config.RmsProp;
import org.nd4j.linalg.learning.regularization.WeightDecay;
import org.nd4j.linalg.lossfunctions.impl.LossMCXENT;
import org.nd4j.linalg.lossfunctions.impl.LossMSE;
import org.nd4j.linalg.lossfunctions.impl.LossNegativeLogLikelihood;
import org.nd4j.common.resources.Resources;
import java.io.File;
import static org.junit.jupiter.api.Assertions.*;
@NativeTag
@Tag(TagNames.DL4J_OLD_API)
public class RegressionTest060 extends BaseDL4JTest {
@Override
public DataType getDataType(){
return DataType.FLOAT;
}
@Override
public long getTimeoutMilliseconds() {
return 180000L; //Most tests should be fast, but slow download may cause timeout on slow connections
}
@Test
public void regressionTestMLP1() throws Exception {
File f = Resources.asFile("regression_testing/060/060_ModelSerializer_Regression_MLP_1.zip");
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(2, conf.getConfs().size());
DenseLayer l0 = (DenseLayer) conf.getConf(0).getLayer();
assertEquals("relu", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(new WeightInitXavier(), l0.getWeightInitFn());
assertEquals(new Nesterovs(0.15, 0.9), l0.getIUpdater());
assertEquals(0.15, ((Nesterovs)l0.getIUpdater()).getLearningRate(), 1e-6);
OutputLayer l1 = (OutputLayer) conf.getConf(1).getLayer();
assertEquals("softmax", l1.getActivationFn().toString());
assertTrue(l1.getLossFn() instanceof LossMCXENT);
assertEquals(4, l1.getNIn());
assertEquals(5, l1.getNOut());
assertEquals(new WeightInitXavier(), l1.getWeightInitFn());
assertEquals(new Nesterovs(0.15, 0.9), l1.getIUpdater());
assertEquals(0.9, ((Nesterovs)l1.getIUpdater()).getMomentum(), 1e-6);
assertEquals(0.15, ((Nesterovs)l1.getIUpdater()).getLearningRate(), 1e-6);
int numParams = (int)net.numParams();
assertEquals(Nd4j.linspace(1, numParams, numParams, Nd4j.dataType()).reshape(1,numParams), net.params());
int updaterSize = (int) new Nesterovs().stateSize(numParams);
assertEquals(Nd4j.linspace(1, updaterSize, updaterSize, Nd4j.dataType()).reshape(1,numParams), net.getUpdater().getStateViewArray());
}
@Test
public void regressionTestMLP2() throws Exception {
File f = Resources.asFile("regression_testing/060/060_ModelSerializer_Regression_MLP_2.zip");
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(2, conf.getConfs().size());
DenseLayer l0 = (DenseLayer) conf.getConf(0).getLayer();
assertTrue(l0.getActivationFn() instanceof ActivationLReLU);
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(new WeightInitDistribution(new NormalDistribution(0.1, 1.2)), l0.getWeightInitFn());
assertEquals(new RmsProp(0.15, 0.96, RmsProp.DEFAULT_RMSPROP_EPSILON), l0.getIUpdater());
assertEquals(0.15, ((RmsProp)l0.getIUpdater()).getLearningRate(), 1e-6);
assertEquals(new Dropout(0.6), l0.getIDropout());
assertEquals(0.1, TestUtils.getL1(l0), 1e-6);
assertEquals(new WeightDecay(0.2, false), TestUtils.getWeightDecayReg(l0));
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
OutputLayer l1 = (OutputLayer) conf.getConf(1).getLayer();
assertEquals("identity", l1.getActivationFn().toString());
assertTrue(l1.getLossFn() instanceof LossMSE);
assertEquals(4, l1.getNIn());
assertEquals(5, l1.getNOut());
assertEquals(new WeightInitDistribution(new NormalDistribution(0.1, 1.2)), l0.getWeightInitFn());
assertEquals(new RmsProp(0.15, 0.96, RmsProp.DEFAULT_RMSPROP_EPSILON), l1.getIUpdater());
assertEquals(0.15, ((RmsProp)l1.getIUpdater()).getLearningRate(), 1e-6);
assertEquals(new Dropout(0.6), l1.getIDropout());
assertEquals(0.1, TestUtils.getL1(l1), 1e-6);
assertEquals(new WeightDecay(0.2,false), TestUtils.getWeightDecayReg(l1));
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
int numParams = (int)net.numParams();
assertEquals(Nd4j.linspace(1, numParams, numParams, Nd4j.dataType()).reshape(1,numParams), net.params());
int updaterSize = (int) new RmsProp().stateSize(numParams);
assertEquals(Nd4j.linspace(1, updaterSize, updaterSize, Nd4j.dataType()).reshape(1,numParams), net.getUpdater().getStateViewArray());
}
@Test
public void regressionTestCNN1() throws Exception {
File f = Resources.asFile("regression_testing/060/060_ModelSerializer_Regression_CNN_1.zip");
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(3, conf.getConfs().size());
ConvolutionLayer l0 = (ConvolutionLayer) conf.getConf(0).getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(3, l0.getNOut());
assertEquals(new WeightInitRelu(), l0.getWeightInitFn());
assertEquals(new RmsProp(0.15, 0.96, RmsProp.DEFAULT_RMSPROP_EPSILON), l0.getIUpdater());
assertEquals(0.15, ((RmsProp)l0.getIUpdater()).getLearningRate(), 1e-6);
assertArrayEquals(new int[] {2, 2}, l0.getKernelSize());
assertArrayEquals(new int[] {1, 1}, l0.getStride());
assertArrayEquals(new int[] {0, 0}, l0.getPadding());
assertEquals(ConvolutionMode.Truncate, l0.getConvolutionMode()); //Pre-0.7.0: no ConvolutionMode. Want to default to truncate here if not set
SubsamplingLayer l1 = (SubsamplingLayer) conf.getConf(1).getLayer();
assertArrayEquals(new int[] {2, 2}, l1.getKernelSize());
assertArrayEquals(new int[] {1, 1}, l1.getStride());
assertArrayEquals(new int[] {0, 0}, l1.getPadding());
assertEquals(PoolingType.MAX, l1.getPoolingType());
assertEquals(ConvolutionMode.Truncate, l1.getConvolutionMode()); //Pre-0.7.0: no ConvolutionMode. Want to default to truncate here if not set
OutputLayer l2 = (OutputLayer) conf.getConf(2).getLayer();
assertEquals("sigmoid", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossNegativeLogLikelihood); //TODO
assertEquals(26 * 26 * 3, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals(new WeightInitRelu(), l0.getWeightInitFn());
assertEquals(new RmsProp(0.15, 0.96, RmsProp.DEFAULT_RMSPROP_EPSILON), l0.getIUpdater());
assertEquals(0.15, ((RmsProp)l0.getIUpdater()).getLearningRate(), 1e-6);
assertTrue(conf.getInputPreProcess(2) instanceof CnnToFeedForwardPreProcessor);
int numParams = (int)net.numParams();
assertEquals(Nd4j.linspace(1, numParams, numParams, Nd4j.dataType()).reshape(1,numParams), net.params());
int updaterSize = (int) new RmsProp().stateSize(numParams);
assertEquals(Nd4j.linspace(1, updaterSize, updaterSize, Nd4j.dataType()).reshape(1,numParams), net.getUpdater().getStateViewArray());
}
@Test
public void regressionTestLSTM1() throws Exception {
File f = Resources.asFile("regression_testing/060/060_ModelSerializer_Regression_LSTM_1.zip");
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(3, conf.getConfs().size());
GravesLSTM l0 = (GravesLSTM) conf.getConf(0).getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 = (GravesBidirectionalLSTM) conf.getConf(1).getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) conf.getConf(2).getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
@Test
public void regressionTestCGLSTM1() throws Exception {
File f = Resources.asFile("regression_testing/060/060_ModelSerializer_Regression_CG_LSTM_1.zip");
ComputationGraph net = ModelSerializer.restoreComputationGraph(f, true);
ComputationGraphConfiguration conf = net.getConfiguration();
assertEquals(3, conf.getVertices().size());
GravesLSTM l0 = (GravesLSTM) ((LayerVertex) conf.getVertices().get("0")).getLayerConf().getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 =
(GravesBidirectionalLSTM) ((LayerVertex) conf.getVertices().get("1")).getLayerConf().getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) ((LayerVertex) conf.getVertices().get("2")).getLayerConf().getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
}