* initial commit Signed-off-by: raver119 <raver119@gmail.com> * one file Signed-off-by: raver119 <raver119@gmail.com> * few more includes Signed-off-by: raver119 <raver119@gmail.com> * m? Signed-off-by: raver119 <raver119@gmail.com> * const Signed-off-by: raver119 <raver119@gmail.com> * cudnn linkage in tests Signed-off-by: raver119 <raver119@gmail.com> * culibos Signed-off-by: raver119 <raver119@gmail.com> * static reminder Signed-off-by: raver119 <raver119@gmail.com> * platform engine tag Signed-off-by: raver119 <raver119@gmail.com> * HAVE_CUDNN moved to config.h.in Signed-off-by: raver119 <raver119@gmail.com> * include Signed-off-by: raver119 <raver119@gmail.com> * include Signed-off-by: raver119 <raver119@gmail.com> * skip cudnn handle creation if there's not cudnn Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * target device in context Signed-off-by: raver119 <raver119@gmail.com> * platform engines Signed-off-by: raver119 <raver119@gmail.com> * platform engines Signed-off-by: raver119 <raver119@gmail.com> * allow multiple -h args Signed-off-by: raver119 <raver119@gmail.com> * allow multiple -h args Signed-off-by: raver119 <raver119@gmail.com> * move mkldnn out of CPU block Signed-off-by: raver119 <raver119@gmail.com> * link to mkldnn on cuda Signed-off-by: raver119 <raver119@gmail.com> * less prints Signed-off-by: raver119 <raver119@gmail.com> * minor tweaks Signed-off-by: raver119 <raver119@gmail.com> * next step Signed-off-by: raver119 <raver119@gmail.com> * conv2d NCHW draft Signed-off-by: raver119 <raver119@gmail.com> * conv2d biasAdd Signed-off-by: raver119 <raver119@gmail.com> * test for MKL/CUDNN combined use Signed-off-by: raver119 <raver119@gmail.com> * - provide additional code for conv2d ff based on cudnn api, not tested yet Signed-off-by: Yurii <iuriish@yahoo.com> * - further work on conv2d helper based on using cudnn api Signed-off-by: Yurii <iuriish@yahoo.com> * - fixing several cuda bugs which appeared after cudnn lib had been started to use Signed-off-by: Yurii <iuriish@yahoo.com> * - implementation of conv2d backprop op based on cudnn api Signed-off-by: Yurii <iuriish@yahoo.com> * - implementaion of conv3d and conv3d_bp ops based on cudnn api Signed-off-by: Yurii <iuriish@yahoo.com> * - bugs fixing in conv3d/conv3d_bp ops (cudnn in use) Signed-off-by: Yurii <iuriish@yahoo.com> * - implementation of depthwiseConv2d (ff/bp) op based on cudnn api Signed-off-by: Yurii <iuriish@yahoo.com> * - implementation of batchnorm ff op based on cudnn api Signed-off-by: Yurii <iuriish@yahoo.com> * - disable cudnn batchnorm temporary Signed-off-by: Yurii <iuriish@yahoo.com> * - add minor change in cmake Signed-off-by: Yurii <iuriish@yahoo.com> * engine for depthwise mkldnn Signed-off-by: raver119 <raver119@gmail.com> * couple of includes Signed-off-by: raver119 <raver119@gmail.com> * - provide permutation to cudnn batchnorm ff when format is NHWC Signed-off-by: Yurii <iuriish@yahoo.com> * lgamma fix Signed-off-by: raver119 <raver119@gmail.com> * - eliminate memory leak in two tests Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: Yurii Shyrma <iuriish@yahoo.com>
159 lines
5.6 KiB
C++
159 lines
5.6 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#ifndef SD_CUDNNUTILS_H
|
|
#define SD_CUDNNUTILS_H
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <platform_boilerplate.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <exceptions/datatype_exception.h>
|
|
#include <dll.h>
|
|
|
|
#include <cudnn.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
DECLARE_PLATFORM(conv2d, ENGINE_CUDA);
|
|
DECLARE_PLATFORM(conv2d_bp, ENGINE_CUDA);
|
|
|
|
DECLARE_PLATFORM(conv3dnew, ENGINE_CUDA);
|
|
DECLARE_PLATFORM(conv3dnew_bp, ENGINE_CUDA);
|
|
|
|
DECLARE_PLATFORM(depthwise_conv2d, ENGINE_CUDA);
|
|
DECLARE_PLATFORM(depthwise_conv2d_bp, ENGINE_CUDA);
|
|
|
|
DECLARE_PLATFORM(batchnorm, ENGINE_CUDA);
|
|
DECLARE_PLATFORM(batchnorm_bp, ENGINE_CUDA);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
FORCEINLINE cudnnDataType_t cudnnDataType(nd4j::DataType dataType) {
|
|
switch (dataType) {
|
|
case nd4j::DataType::FLOAT32:
|
|
return CUDNN_DATA_FLOAT;
|
|
case nd4j::DataType::DOUBLE:
|
|
return CUDNN_DATA_DOUBLE;
|
|
case nd4j::DataType::HALF:
|
|
return CUDNN_DATA_HALF;
|
|
case nd4j::DataType::INT32:
|
|
return CUDNN_DATA_INT32;
|
|
case nd4j::DataType::INT8:
|
|
return CUDNN_DATA_INT8;
|
|
default:
|
|
throw datatype_exception::build("Unsupported data type", dataType);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
FORCEINLINE void checkConv2dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
const int iH, const int iW,
|
|
const int oH, const int oW,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const bool isNCHW) {
|
|
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
if(!isPHasymm && !isPWasymm)
|
|
return;
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
const int iHposition = isNCHW ? 2 : 1;
|
|
|
|
if(isPHasymm)
|
|
newShape[iHposition] += 1;
|
|
if(isPWasymm)
|
|
newShape[iHposition + 1] += 1;
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
if(isNCHW)
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3)}).assign(input);
|
|
else
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,0}).assign(input);
|
|
|
|
input = newInput;
|
|
|
|
if(gradI != nullptr)
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
FORCEINLINE void checkConv3dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
const int iD, const int iH, const int iW,
|
|
const int oD, const int oH, const int oW,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const bool isNCDHW) {
|
|
|
|
const auto pDsum = ((oD - 1) * sD + ((kD - 1) * dD + 1) - iD);
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
const bool isPDasymm = pD != (pDsum - pD);
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
if(!isPDasymm && !isPHasymm && !isPWasymm)
|
|
return;
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
const int iDposition = isNCDHW ? 2 : 1;
|
|
|
|
if(isPDasymm)
|
|
newShape[iDposition] += 1;
|
|
if(isPHasymm)
|
|
newShape[iDposition + 1] += 1;
|
|
if(isPWasymm)
|
|
newShape[iDposition + 2] += 1;
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
if(isNCDHW)
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3), 0,input->sizeAt(4)}).assign(input);
|
|
else
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,input->sizeAt(3), 0,0}).assign(input);
|
|
|
|
input = newInput;
|
|
|
|
if(gradI != nullptr)
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif //SD_CUDNNUTILS_H
|