* initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io>
333 lines
15 KiB
Plaintext
333 lines
15 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <op_boilerplate.h>
|
|
#include <loops/reduce_long.h>
|
|
#include <loops/legacy_ops.h>
|
|
#include <helpers/DebugHelper.h>
|
|
#include <types/types.h>
|
|
#include <execution/LaunchContext.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <loops/scalar.h>
|
|
|
|
|
|
using namespace simdOps;
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z, typename OpType>
|
|
__device__ void reduceSimpleGeneric(void *x, Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
void *reductionBuffer,
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
functions::reduce::ReduceLongFunction<X,Z>::template transformCudaXD<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z, typename OpType>
|
|
__device__ void reduceScalarGeneric(void *x, Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
functions::reduce::ReduceLongFunction<X, Z>::template execScalarCuda<OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z, typename OpType>
|
|
__global__ void simpleReduce(void *x, Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
void *reductionBuffer,
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
reduceSimpleGeneric<X, Z, OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z, typename OpType>
|
|
__global__ void simpleScalar(void *x, Nd4jLong *xShapeInfo,
|
|
void *extraParams,
|
|
void *z, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
reduceScalarGeneric<X, Z, OpType>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo);
|
|
}
|
|
|
|
namespace functions {
|
|
namespace reduce {
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
template <typename OpType>
|
|
__device__ void ReduceLongFunction<X,Z>::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) {
|
|
|
|
// start the shared memory loop on the next power of 2 less
|
|
// than the block size. If block size is not a power of 2,
|
|
// accumulate the intermediate sums in the remainder range.
|
|
|
|
auto sPartials = reinterpret_cast<Z*>(vsPartials);
|
|
auto extraParams = reinterpret_cast<X*>(vextraParams);
|
|
|
|
Nd4jLong floorPow2 = numItems;
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
while (floorPow2 & (floorPow2 - 1))
|
|
floorPow2 &= floorPow2 - 1;
|
|
|
|
if (tid >= floorPow2)
|
|
sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
|
if (tid < activeThreads && tid + activeThreads < numItems)
|
|
sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
|
|
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
template <typename OpType>
|
|
__device__ void ReduceLongFunction<X,Z>::transformCudaXD( void *vx, Nd4jLong *xShapeInfo,
|
|
void *vextraParams,
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
int *dimension, int dimensionLength,
|
|
void *vreductionBuffer,
|
|
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
auto extraParams = reinterpret_cast<X*>(vextraParams);
|
|
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
|
|
|
|
//shared memory space for storing intermediate results
|
|
__shared__ Z* sPartials;
|
|
__shared__ int tadLength, numTads;
|
|
__shared__ bool isPlainOutput;
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sPartials = reinterpret_cast<Z*>(shmem);
|
|
|
|
isPlainOutput = shape::order(zShapeInfo) == 'c' && shape::elementWiseStride(zShapeInfo) == 1;
|
|
|
|
tadLength = shape::length(tadOnlyShapeInfo);
|
|
numTads = shape::length(xShapeInfo) / tadLength;
|
|
}
|
|
__syncthreads();
|
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
|
|
|
Nd4jLong tadOffsetForBlock = tadOffsets[r];
|
|
sPartials[threadIdx.x] = OpType::startingValue(x + tadOffsetForBlock);
|
|
|
|
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
|
|
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength);
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[xOffset], extraParams), extraParams);
|
|
}
|
|
__syncthreads();
|
|
|
|
// aggregate. do NOT reduce for elements > tadLength
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0)
|
|
z[isPlainOutput ? r : shape::getIndexOffset(r, zShapeInfo, numTads)] = OpType::postProcess(sPartials[threadIdx.x], tadLength, extraParams);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
template <typename OpType>
|
|
__device__ void ReduceLongFunction<X,Z>::execScalarCuda(void *vx, Nd4jLong *xShapeInfo,
|
|
void *vextraParams,
|
|
void *vz, Nd4jLong *zShapeInfo,
|
|
void *vreductionBuffer,
|
|
Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
auto extraParams = reinterpret_cast<X*>(vextraParams);
|
|
auto reductionBuffer = reinterpret_cast<Z*>(vreductionBuffer);
|
|
|
|
auto tid = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
//shared memory space for storing intermediate results
|
|
__shared__ Z* sPartials;
|
|
__shared__ Nd4jLong xEws;
|
|
__shared__ Nd4jLong len;
|
|
|
|
if(threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sPartials = reinterpret_cast<Z*>(shmem);
|
|
xEws = shape::elementWiseStride(xShapeInfo);
|
|
len = shape::length(xShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
if (xEws > 0)
|
|
for (int i = tid; i < len; i += (blockDim.x * gridDim.x))
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams);
|
|
else
|
|
for (int i = tid; i < len; i += blockDim.x * gridDim.x)
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo, len)], extraParams), extraParams);
|
|
|
|
__syncthreads();
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, len), extraParams);
|
|
__syncthreads();
|
|
|
|
if (gridDim.x > 1) {
|
|
|
|
auto tc = reinterpret_cast<unsigned int *>(reductionBuffer);
|
|
__shared__ bool amLast;
|
|
|
|
tid = threadIdx.x;
|
|
if (threadIdx.x == 0)
|
|
reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams);
|
|
|
|
__threadfence();
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0) {
|
|
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
|
|
amLast = (ticket == gridDim.x - 1);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (amLast) {
|
|
tc[16384] = 0;
|
|
sPartials[threadIdx.x] = OpType::startingValue(x);
|
|
|
|
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x)
|
|
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams);
|
|
|
|
__syncthreads();
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x), extraParams);
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0) {
|
|
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
|
|
if (threadIdx.x == 0) {
|
|
auto tc = reinterpret_cast<unsigned int*>(reductionBuffer);
|
|
tc[16384] = 0;
|
|
z[0] = OpType::postProcess(sPartials[0], len, extraParams);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
template<typename OpType>
|
|
__host__ void ReduceLongFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
if(shape::isEmpty(hXShapeInfo)) {
|
|
|
|
if(shape::isEmpty(hZShapeInfo))
|
|
return;
|
|
|
|
const auto startingVal = static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
|
|
|
|
auto res = cudaMemcpyAsync(nd4j::LaunchContext::defaultContext()->getScalarPointer(), &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
|
|
if (res != 0)
|
|
throw nd4j::cuda_exception::build("ReduceLongFunction<X,Z>::intermediateXD: failed to copy temporary scalar", res);
|
|
|
|
auto ptr = nd4j::LaunchContext::defaultContext()->getScalarPointer();
|
|
|
|
// scalar assign
|
|
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShapeInfo, hXShapeInfo, z, zShapeInfo, hZShapeInfo, ptr, nullptr);
|
|
}
|
|
else {
|
|
simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
template<typename OpType>
|
|
__host__ void ReduceLongFunction<X,Z>::intermediateScalar(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
if (shape::isEmpty(hXShapeInfo)) {
|
|
|
|
if (shape::isEmpty(hZShapeInfo))
|
|
return;
|
|
|
|
const auto startingVal = static_cast<Z>(OpType::startingValue(reinterpret_cast<X*>(x)));
|
|
|
|
auto res = cudaMemcpyAsync(z, &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
|
|
if (res != 0)
|
|
throw nd4j::cuda_exception::build("ReduceLongFunction<X,Z>::intermediateScalar: failed to copy resulting scalar", res);
|
|
}
|
|
else {
|
|
simpleScalar<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Y>
|
|
_CUDA_H void ReduceLongFunction<X,Y>::execReduceScalar(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, Nd4jLong* hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong* hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo) {
|
|
|
|
DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, hXShapeInfo, extraParams, z, zShapeInfo, hZShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_LONG_OPS));
|
|
nd4j::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed");
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Y>
|
|
_CUDA_H void ReduceLongFunction<X,Y>::execReduceXD(dim3 launchDims, cudaStream_t *stream, int opNum, int rank, void *x, Nd4jLong *xShapeInfo, Nd4jLong* hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong* hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
|
|
|
|
DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, xShapeInfo, hXShapeInfo, extraParams, z, zShapeInfo, hZShapeInfo, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets), OPS_A(REDUCE_LONG_OPS));
|
|
DEBUG_KERNEL(stream, opNum);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename X>
|
|
__device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) {
|
|
int sPartialsLength = sMemSize / sizeof(X);
|
|
X *sPartialsDeref = (X *) *sPartials;
|
|
for (int i = 0; i < sPartialsLength; i++)
|
|
sPartialsDeref[i] = extraParams[0];
|
|
|
|
}
|
|
|
|
|
|
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceLongFunction, , LIBND4J_TYPES, LONG_TYPES);
|
|
|
|
}
|
|
}
|
|
|