194 lines
7.5 KiB
Plaintext
194 lines
7.5 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/transforms.h>
|
|
#include <array/ResultSet.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <numeric>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <helpers/TAD.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void concatCuda(void* pVx, void* pxShapeInfo, void* vz, Nd4jLong* zShapeInfo, const int axis) {
|
|
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
__shared__ Nd4jLong zLen, totalThreads;
|
|
__shared__ int rank;
|
|
|
|
if (threadIdx.x == 0) {
|
|
zLen = shape::length(zShapeInfo);
|
|
rank = shape::rank(zShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
|
|
for (uint64_t i = tid; i < zLen; i += totalThreads) {
|
|
shape::index2coords(i, zShapeInfo, coords);
|
|
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
|
|
int inArrIdx = 0;
|
|
Nd4jLong *xShapeInfo = reinterpret_cast<Nd4jLong **>(pxShapeInfo)[inArrIdx];
|
|
|
|
while (coords[axis] >= xShapeInfo[axis + 1]) {
|
|
coords[axis] -= xShapeInfo[axis + 1];
|
|
xShapeInfo = reinterpret_cast<Nd4jLong **>(pxShapeInfo)[++inArrIdx];
|
|
}
|
|
|
|
const auto *x = reinterpret_cast<T *>(reinterpret_cast<void **>(pVx)[inArrIdx]);
|
|
const auto xOffset = shape::getOffset(xShapeInfo, coords);
|
|
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__host__ static void concatCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
void* pVx, void* pxShapeInfo, void* vz, Nd4jLong* zShapeInfo, const int axis) {
|
|
|
|
concatCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(pVx, pxShapeInfo, vz, zShapeInfo, axis);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void concatCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* vz, Nd4jLong* zShapeInfo, const int axis), LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void concat(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
|
|
|
|
const int numOfInArrs = inArrs.size();
|
|
const auto sizeofT = output.sizeOfT();
|
|
|
|
NDArray::prepareSpecialUse({&output}, inArrs);
|
|
|
|
bool luckCase1 = ((axis == 0 && output.ordering() == 'c') || (axis == output.rankOf() - 1 && output.ordering() == 'f')) && output.ews() == 1;
|
|
|
|
if(luckCase1) {
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
luckCase1 &= inArrs[i]->ordering() == output.ordering() && inArrs[i]->ews() == 1;
|
|
if(!luckCase1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(luckCase1) { // for example {1,10} + {2,10} + {3,10} = {6, 10} order c; or {10,1} + {10,2} + {10,3} = {10, 6} order f
|
|
|
|
void* z = static_cast<int8_t*>(output.getSpecialBuffer());
|
|
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
const auto memAmountToCopy = inArrs[i]->lengthOf() * sizeofT;
|
|
cudaMemcpyAsync(z, static_cast<int8_t*>(inArrs[i]->getSpecialBuffer()), memAmountToCopy, cudaMemcpyDeviceToDevice, *context->getCudaStream());
|
|
z = static_cast<int8_t*>(z) + memAmountToCopy;
|
|
}
|
|
|
|
if(cudaStreamSynchronize(*context->getCudaStream()) != 0)
|
|
throw std::runtime_error("concat cuda: luckCase1 failed!");
|
|
|
|
for(int i = 0; i < numOfInArrs; ++i)
|
|
inArrs[i]->tickReadDevice();
|
|
output.tickWriteDevice();
|
|
|
|
return;
|
|
}
|
|
|
|
// const bool isZcontin = output.strideAt(axis) == 1;
|
|
// bool areInputsContin = true;
|
|
// bool allSameOrder = true;
|
|
// std::vector<Nd4jLong> strideOfContigStride(numOfInArrs);
|
|
|
|
// if(isZcontin) {
|
|
|
|
// for (uint i = 0; i < inArrs.size(); ++i) {
|
|
|
|
// areInputsContin &= inArrs[i]->strideAt(axis) == 1;
|
|
// allSameOrder &= output.ordering() == inArrs[i]->ordering();
|
|
// if(!areInputsContin || !allSameOrder)
|
|
// break;
|
|
|
|
// strideOfContigStride[i] = shape::strideOverContigAxis(axis, inArrs[i]->getShapeInfo());
|
|
// }
|
|
// }
|
|
|
|
// const bool luckCase2 = isZcontin && areInputsContin && allSameOrder;
|
|
|
|
// if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array
|
|
|
|
// const auto zStep = shape::strideOverContigAxis(axis, output.getShapeInfo());
|
|
|
|
// for (uint i = 0; i < output.lengthOf() / output.sizeAt(axis); ++i) {
|
|
|
|
// const auto iShift = i * sizeofT;
|
|
// void* z = static_cast<int8_t*>(output.getSpecialBuffer()) + zStep * iShift;
|
|
|
|
// for (uint j = 0; j < numOfInArrs; ++j) {
|
|
// const auto xDim = inArrs[j]->sizeAt(axis);
|
|
// void* x = static_cast<int8_t*>(inArrs[j]->getSpecialBuffer()) + strideOfContigStride[j] * iShift;
|
|
// const auto memSizeToCopy = xDim * sizeofT;
|
|
// cudaMemcpyAsync(z, x, memSizeToCopy, cudaMemcpyDeviceToDevice, *context->getCudaStream());
|
|
// z = static_cast<int8_t*>(z) + memSizeToCopy;
|
|
// }
|
|
// }
|
|
|
|
// if(cudaStreamSynchronize(*context->getCudaStream()) != 0)
|
|
// throw std::runtime_error("concat cuda: luckCase2 failed!");
|
|
// }
|
|
// else { // general (slower) case
|
|
|
|
const int threadsPerBlock = 256;
|
|
const int blocksPerGrid = 512;
|
|
const int sharedMem = 512;
|
|
|
|
// prepare arrays of pointers on buffers and shapes
|
|
std::vector<void*> hInBuffers(numOfInArrs);
|
|
std::vector<Nd4jLong*> hInShapeInfo(numOfInArrs);
|
|
|
|
for(int i = 0; i < numOfInArrs; ++i) {
|
|
hInBuffers[i] = inArrs[i]->getSpecialBuffer();
|
|
hInShapeInfo[i] = inArrs[i]->getSpecialShapeInfo();
|
|
}
|
|
|
|
PointersManager manager(context, "helpers::concat");
|
|
|
|
void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*));
|
|
void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*));
|
|
|
|
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), concatCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), dInBuffers, dInShapeInfo, output.specialBuffer(), output.specialShapeInfo(), axis), LIBND4J_TYPES);
|
|
|
|
manager.synchronize();
|
|
// }
|
|
|
|
NDArray::registerSpecialUse({&output}, inArrs);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |