* cleaned up bert iterator tests (#110) Signed-off-by: eraly <susan.eraly@gmail.com> * Various pre-release fixes (#111) * Various fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix default dtypes for MaxPoolWithArgmax Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small pre-release tweak (#112) * Log UI address on launch as in previous Play-based UI Signed-off-by: AlexDBlack <blacka101@gmail.com> * Logging level tweak for UI Signed-off-by: AlexDBlack <blacka101@gmail.com> * http not https Signed-off-by: AlexDBlack <blacka101@gmail.com> * datavec python ensure host (#113) * ensure host * one more host ensure * info->debug * [WIP] reverse improvements (#115) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * reverse draft Signed-off-by: raver119 <raver119@gmail.com> * reverse kernel Signed-off-by: raver119 <raver119@gmail.com> * reverse kernel Signed-off-by: raver119 <raver119@gmail.com> * 2 micro fixes Signed-off-by: raver119 <raver119@gmail.com> * Shugeo resize fix5 (#102) * Refactored resize images ops to use TF-like bool args as input. * Refactored helpers for cpu implementation of resize_bilinear and resize_nearest_neighbor ops. * Refactored cuda implementation for image.resize_bilinear and image.resize_nearest_neighbor ops helpers. * Refactored nearest_neighbor resize op. * Added a pair of tests for special case of resize_bilinear algorithm. * Fixed issue with resize_bilinear op. * Refactored cpu implementation for helpers with resize_nearest_neighbor op. * Final fixed for resize ops to conform TF v.1.5 * Refactored cuda helpers for resize_neares_neighbor op. * Fixed resize_bilinear to accept proper data. * Fixed issue with non-float input for resize_bilinear op. * Refactored cuda helper for resize_bilinear to proper process non-float inputs. * Added tests for resize_bilinear to int inputs. * Fixed ResizeBilinear wrapper * Tests fixed * Fixed float and bool constant to avoid overflow for some kind of compilers. * Corrected float constants with float data type. * Added f suffix for float constants. * Corrected float constant to avoid overflow with initializing lists. * Corrected float initializing list with float input. * Corrected bool constant with initalizing list. * Corrected float and bool values with initializing lists. * Fixed wrong constant. * Fixed issue with 1x1 input picture for resize. * ResizeBilinear default values on import fix Signed-off-by: raver119 <raver119@gmail.com>
647 lines
31 KiB
Java
647 lines
31 KiB
Java
/*******************************************************************************
|
|
* Copyright (c) 2015-2019 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
package org.deeplearning4j.iterator;
|
|
|
|
import lombok.Getter;
|
|
import org.deeplearning4j.BaseDL4JTest;
|
|
import org.deeplearning4j.iterator.bert.BertMaskedLMMasker;
|
|
import org.deeplearning4j.iterator.provider.CollectionLabeledPairSentenceProvider;
|
|
import org.deeplearning4j.iterator.provider.CollectionLabeledSentenceProvider;
|
|
import org.deeplearning4j.text.tokenization.tokenizerfactory.BertWordPieceTokenizerFactory;
|
|
import org.junit.Test;
|
|
import org.nd4j.linalg.api.buffer.DataType;
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
import org.nd4j.linalg.dataset.api.MultiDataSet;
|
|
import org.nd4j.linalg.factory.Nd4j;
|
|
import org.nd4j.linalg.indexing.NDArrayIndex;
|
|
import org.nd4j.linalg.primitives.Pair;
|
|
import org.nd4j.linalg.primitives.Triple;
|
|
import org.nd4j.resources.Resources;
|
|
|
|
import java.io.File;
|
|
import java.io.IOException;
|
|
import java.nio.charset.Charset;
|
|
import java.nio.charset.StandardCharsets;
|
|
import java.util.*;
|
|
|
|
import static org.junit.Assert.*;
|
|
|
|
|
|
public class TestBertIterator extends BaseDL4JTest {
|
|
|
|
private static File pathToVocab = Resources.asFile("other/vocab.txt");
|
|
private static Charset c = StandardCharsets.UTF_8;
|
|
private static String shortSentence = "I saw a girl with a telescope.";
|
|
private static String longSentence = "Donaudampfschifffahrts Kapitänsmützeninnenfuttersaum";
|
|
private static String sentenceA = "Goodnight noises everywhere";
|
|
private static String sentenceB = "Goodnight moon";
|
|
|
|
public TestBertIterator() throws IOException {
|
|
}
|
|
|
|
@Test(timeout = 20000L)
|
|
public void testBertSequenceClassification() throws Exception {
|
|
|
|
int minibatchSize = 2;
|
|
TestSentenceHelper testHelper = new TestSentenceHelper();
|
|
BertIterator b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, 16)
|
|
.minibatchSize(minibatchSize)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.build();
|
|
|
|
MultiDataSet mds = b.next();
|
|
assertEquals(1, mds.getFeatures().length);
|
|
System.out.println(mds.getFeatures(0));
|
|
System.out.println(mds.getFeaturesMaskArray(0));
|
|
|
|
INDArray expF = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expM = Nd4j.create(DataType.INT, 1, 16);
|
|
Map<String, Integer> m = testHelper.getTokenizer().getVocab();
|
|
for (int i = 0; i < minibatchSize; i++) {
|
|
INDArray expFTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expMTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
List<String> tokens = testHelper.getTokenizedSentences().get(i);
|
|
System.out.println(tokens);
|
|
for (int j = 0; j < tokens.size(); j++) {
|
|
String token = tokens.get(j);
|
|
if (!m.containsKey(token)) {
|
|
throw new IllegalStateException("Unknown token: \"" + token + "\"");
|
|
}
|
|
int idx = m.get(token);
|
|
expFTemp.putScalar(0, j, idx);
|
|
expMTemp.putScalar(0, j, 1);
|
|
}
|
|
if (i == 0) {
|
|
expF = expFTemp.dup();
|
|
expM = expMTemp.dup();
|
|
} else {
|
|
expF = Nd4j.vstack(expF, expFTemp);
|
|
expM = Nd4j.vstack(expM, expMTemp);
|
|
}
|
|
}
|
|
assertEquals(expF, mds.getFeatures(0));
|
|
assertEquals(expM, mds.getFeaturesMaskArray(0));
|
|
assertEquals(expF, b.featurizeSentences(testHelper.getSentences()).getFirst()[0]);
|
|
assertEquals(expM, b.featurizeSentences(testHelper.getSentences()).getSecond()[0]);
|
|
|
|
assertFalse(b.hasNext());
|
|
b.reset();
|
|
assertTrue(b.hasNext());
|
|
|
|
//Same thing, but with segment ID also
|
|
b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, 16)
|
|
.minibatchSize(minibatchSize)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.build();
|
|
mds = b.next();
|
|
assertEquals(2, mds.getFeatures().length);
|
|
//Segment ID should be all 0s for single segment task
|
|
INDArray segmentId = expM.like();
|
|
assertEquals(segmentId, mds.getFeatures(1));
|
|
assertEquals(segmentId, b.featurizeSentences(testHelper.getSentences()).getFirst()[1]);
|
|
}
|
|
|
|
@Test(timeout = 20000L)
|
|
public void testBertUnsupervised() throws Exception {
|
|
int minibatchSize = 2;
|
|
TestSentenceHelper testHelper = new TestSentenceHelper();
|
|
//Task 1: Unsupervised
|
|
BertIterator b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, 16)
|
|
.minibatchSize(minibatchSize)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.UNSUPERVISED)
|
|
.masker(new BertMaskedLMMasker(new Random(12345), 0.2, 0.5, 0.5))
|
|
.unsupervisedLabelFormat(BertIterator.UnsupervisedLabelFormat.RANK2_IDX)
|
|
.maskToken("[MASK]")
|
|
.build();
|
|
|
|
System.out.println("Mask token index: " + testHelper.getTokenizer().getVocab().get("[MASK]"));
|
|
|
|
MultiDataSet mds = b.next();
|
|
System.out.println(mds.getFeatures(0));
|
|
System.out.println(mds.getFeaturesMaskArray(0));
|
|
System.out.println(mds.getLabels(0));
|
|
System.out.println(mds.getLabelsMaskArray(0));
|
|
|
|
assertFalse(b.hasNext());
|
|
b.reset();
|
|
assertTrue(b.hasNext());
|
|
}
|
|
|
|
@Test(timeout = 20000L)
|
|
public void testLengthHandling() throws Exception {
|
|
int minibatchSize = 2;
|
|
TestSentenceHelper testHelper = new TestSentenceHelper();
|
|
INDArray expF = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expM = Nd4j.create(DataType.INT, 1, 16);
|
|
Map<String, Integer> m = testHelper.getTokenizer().getVocab();
|
|
for (int i = 0; i < minibatchSize; i++) {
|
|
List<String> tokens = testHelper.getTokenizedSentences().get(i);
|
|
INDArray expFTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expMTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
System.out.println(tokens);
|
|
for (int j = 0; j < tokens.size(); j++) {
|
|
String token = tokens.get(j);
|
|
if (!m.containsKey(token)) {
|
|
throw new IllegalStateException("Unknown token: \"" + token + "\"");
|
|
}
|
|
int idx = m.get(token);
|
|
expFTemp.putScalar(0, j, idx);
|
|
expMTemp.putScalar(0, j, 1);
|
|
}
|
|
if (i == 0) {
|
|
expF = expFTemp.dup();
|
|
expM = expMTemp.dup();
|
|
} else {
|
|
expF = Nd4j.vstack(expF, expFTemp);
|
|
expM = Nd4j.vstack(expM, expMTemp);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------
|
|
|
|
//Fixed length: clip or pad - already tested in other tests
|
|
|
|
//Any length: as long as we need to fit longest sequence
|
|
|
|
BertIterator b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.ANY_LENGTH, -1)
|
|
.minibatchSize(minibatchSize)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.build();
|
|
MultiDataSet mds = b.next();
|
|
long[] expShape = new long[]{2, 14};
|
|
assertArrayEquals(expShape, mds.getFeatures(0).shape());
|
|
assertArrayEquals(expShape, mds.getFeaturesMaskArray(0).shape());
|
|
assertEquals(expF.get(NDArrayIndex.all(), NDArrayIndex.interval(0, 14)), mds.getFeatures(0));
|
|
assertEquals(expM.get(NDArrayIndex.all(), NDArrayIndex.interval(0, 14)), mds.getFeaturesMaskArray(0));
|
|
assertEquals(mds.getFeatures(0), b.featurizeSentences(testHelper.getSentences()).getFirst()[0]);
|
|
assertEquals(mds.getFeaturesMaskArray(0), b.featurizeSentences(testHelper.getSentences()).getSecond()[0]);
|
|
|
|
//Clip only: clip to maximum, but don't pad if less
|
|
b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.CLIP_ONLY, 20)
|
|
.minibatchSize(minibatchSize)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.build();
|
|
expShape = new long[]{2, 14};
|
|
assertArrayEquals(expShape, mds.getFeatures(0).shape());
|
|
assertArrayEquals(expShape, mds.getFeaturesMaskArray(0).shape());
|
|
}
|
|
|
|
@Test(timeout = 20000L)
|
|
public void testMinibatchPadding() throws Exception {
|
|
Nd4j.setDefaultDataTypes(DataType.FLOAT, DataType.FLOAT);
|
|
int minibatchSize = 3;
|
|
TestSentenceHelper testHelper = new TestSentenceHelper(minibatchSize);
|
|
INDArray zeros = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expF = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expM = Nd4j.create(DataType.INT, 1, 16);
|
|
Map<String, Integer> m = testHelper.getTokenizer().getVocab();
|
|
for (int i = 0; i < minibatchSize; i++) {
|
|
List<String> tokens = testHelper.getTokenizedSentences().get(i);
|
|
INDArray expFTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
INDArray expMTemp = Nd4j.create(DataType.INT, 1, 16);
|
|
System.out.println(tokens);
|
|
for (int j = 0; j < tokens.size(); j++) {
|
|
String token = tokens.get(j);
|
|
if (!m.containsKey(token)) {
|
|
throw new IllegalStateException("Unknown token: \"" + token + "\"");
|
|
}
|
|
int idx = m.get(token);
|
|
expFTemp.putScalar(0, j, idx);
|
|
expMTemp.putScalar(0, j, 1);
|
|
}
|
|
if (i == 0) {
|
|
expF = expFTemp.dup();
|
|
expM = expMTemp.dup();
|
|
} else {
|
|
expF = Nd4j.vstack(expF.dup(), expFTemp);
|
|
expM = Nd4j.vstack(expM.dup(), expMTemp);
|
|
}
|
|
}
|
|
|
|
expF = Nd4j.vstack(expF, zeros);
|
|
expM = Nd4j.vstack(expM, zeros);
|
|
INDArray expL = Nd4j.createFromArray(new float[][]{{0, 1}, {1, 0}, {0, 1}, {0, 0}});
|
|
INDArray expLM = Nd4j.create(DataType.FLOAT, 4, 1);
|
|
expLM.putScalar(0, 0, 1);
|
|
expLM.putScalar(1, 0, 1);
|
|
expLM.putScalar(2, 0, 1);
|
|
|
|
//--------------------------------------------------------------
|
|
|
|
BertIterator b = BertIterator.builder()
|
|
.tokenizer(testHelper.getTokenizer())
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, 16)
|
|
.minibatchSize(minibatchSize + 1)
|
|
.padMinibatches(true)
|
|
.sentenceProvider(testHelper.getSentenceProvider())
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.build();
|
|
|
|
MultiDataSet mds = b.next();
|
|
long[] expShape = {4, 16};
|
|
assertArrayEquals(expShape, mds.getFeatures(0).shape());
|
|
assertArrayEquals(expShape, mds.getFeatures(1).shape());
|
|
assertArrayEquals(expShape, mds.getFeaturesMaskArray(0).shape());
|
|
|
|
long[] lShape = {4, 2};
|
|
long[] lmShape = {4, 1};
|
|
assertArrayEquals(lShape, mds.getLabels(0).shape());
|
|
assertArrayEquals(lmShape, mds.getLabelsMaskArray(0).shape());
|
|
|
|
assertEquals(expF, mds.getFeatures(0));
|
|
assertEquals(expM, mds.getFeaturesMaskArray(0));
|
|
assertEquals(expL, mds.getLabels(0));
|
|
assertEquals(expLM, mds.getLabelsMaskArray(0));
|
|
|
|
assertEquals(expF, b.featurizeSentences(testHelper.getSentences()).getFirst()[0]);
|
|
assertEquals(expM, b.featurizeSentences(testHelper.getSentences()).getSecond()[0]);
|
|
}
|
|
|
|
/*
|
|
Checks that a mds from a pair sentence is equal to hstack'd mds from the left side and right side of the pair
|
|
Checks different lengths for max length to check popping and padding
|
|
*/
|
|
@Test
|
|
public void testSentencePairsSingle() throws IOException {
|
|
boolean prependAppend;
|
|
int numOfSentences;
|
|
|
|
TestSentenceHelper testHelper = new TestSentenceHelper();
|
|
int shortL = testHelper.getShortestL();
|
|
int longL = testHelper.getLongestL();
|
|
|
|
Triple<MultiDataSet, MultiDataSet, MultiDataSet> multiDataSetTriple;
|
|
MultiDataSet fromPair, leftSide, rightSide;
|
|
|
|
// check for pair max length exactly equal to sum of lengths - pop neither no padding
|
|
// should be the same as hstack with segment ids 1 for second sentence
|
|
prependAppend = true;
|
|
numOfSentences = 1;
|
|
multiDataSetTriple = generateMultiDataSets(new Triple<>(shortL + longL, shortL, longL), prependAppend, numOfSentences);
|
|
fromPair = multiDataSetTriple.getFirst();
|
|
leftSide = multiDataSetTriple.getSecond();
|
|
rightSide = multiDataSetTriple.getThird();
|
|
assertEquals(fromPair.getFeatures(0), Nd4j.hstack(leftSide.getFeatures(0), rightSide.getFeatures(0)));
|
|
rightSide.getFeatures(1).addi(1); //add 1 for right side segment ids
|
|
assertEquals(fromPair.getFeatures(1), Nd4j.hstack(leftSide.getFeatures(1), rightSide.getFeatures(1)));
|
|
assertEquals(fromPair.getFeaturesMaskArray(0), Nd4j.hstack(leftSide.getFeaturesMaskArray(0), rightSide.getFeaturesMaskArray(0)));
|
|
|
|
//check for pair max length greater than sum of lengths - pop neither with padding
|
|
// features should be the same as hstack of shorter and longer padded with prepend/append
|
|
// segment id should 1 only in the longer for part of the length of the sentence
|
|
prependAppend = true;
|
|
numOfSentences = 1;
|
|
multiDataSetTriple = generateMultiDataSets(new Triple<>(shortL + longL + 5, shortL, longL + 5), prependAppend, numOfSentences);
|
|
fromPair = multiDataSetTriple.getFirst();
|
|
leftSide = multiDataSetTriple.getSecond();
|
|
rightSide = multiDataSetTriple.getThird();
|
|
assertEquals(fromPair.getFeatures(0), Nd4j.hstack(leftSide.getFeatures(0), rightSide.getFeatures(0)));
|
|
rightSide.getFeatures(1).get(NDArrayIndex.all(), NDArrayIndex.interval(0, longL + 1)).addi(1); //segmentId stays 0 for the padded part
|
|
assertEquals(fromPair.getFeatures(1), Nd4j.hstack(leftSide.getFeatures(1), rightSide.getFeatures(1)));
|
|
assertEquals(fromPair.getFeaturesMaskArray(0), Nd4j.hstack(leftSide.getFeaturesMaskArray(0), rightSide.getFeaturesMaskArray(0)));
|
|
|
|
//check for pair max length less than shorter sentence - pop both
|
|
//should be the same as hstack with segment ids 1 for second sentence if no prepend/append
|
|
int maxL = 5;//checking odd
|
|
numOfSentences = 3;
|
|
prependAppend = false;
|
|
multiDataSetTriple = generateMultiDataSets(new Triple<>(maxL, maxL / 2, maxL - maxL / 2), prependAppend, numOfSentences);
|
|
fromPair = multiDataSetTriple.getFirst();
|
|
leftSide = multiDataSetTriple.getSecond();
|
|
rightSide = multiDataSetTriple.getThird();
|
|
assertEquals(fromPair.getFeatures(0), Nd4j.hstack(leftSide.getFeatures(0), rightSide.getFeatures(0)));
|
|
rightSide.getFeatures(1).addi(1);
|
|
assertEquals(fromPair.getFeatures(1), Nd4j.hstack(leftSide.getFeatures(1), rightSide.getFeatures(1)));
|
|
assertEquals(fromPair.getFeaturesMaskArray(0), Nd4j.hstack(leftSide.getFeaturesMaskArray(0), rightSide.getFeaturesMaskArray(0)));
|
|
}
|
|
|
|
/*
|
|
Same idea as previous test - construct mds from bert iterator with sep sentences and check against one with pairs
|
|
Checks various max lengths
|
|
Has sentences of varying lengths
|
|
*/
|
|
@Test
|
|
public void testSentencePairsUnequalLengths() throws IOException {
|
|
|
|
int minibatchSize = 4;
|
|
int numOfSentencesinIter = 3;
|
|
|
|
TestSentencePairsHelper testPairHelper = new TestSentencePairsHelper(numOfSentencesinIter);
|
|
int shortL = testPairHelper.getShortL();
|
|
int longL = testPairHelper.getLongL();
|
|
int sent1L = testPairHelper.getSentenceALen();
|
|
int sent2L = testPairHelper.getSentenceBLen();
|
|
|
|
System.out.println("Sentence Pairs, Left");
|
|
System.out.println(testPairHelper.getSentencesLeft());
|
|
System.out.println("Sentence Pairs, Right");
|
|
System.out.println(testPairHelper.getSentencesRight());
|
|
|
|
//anything outside this range more will need to check padding,truncation
|
|
for (int maxL = longL + shortL; maxL > 2 * shortL + 1; maxL--) {
|
|
|
|
System.out.println("Running for max length = " + maxL);
|
|
|
|
MultiDataSet leftMDS = BertIterator.builder()
|
|
.tokenizer(testPairHelper.getTokenizer())
|
|
.minibatchSize(minibatchSize)
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testPairHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, longL * 10) //random big num guaranteed to be longer than either
|
|
.sentenceProvider(new TestSentenceHelper(numOfSentencesinIter).getSentenceProvider())
|
|
.padMinibatches(true)
|
|
.build().next();
|
|
|
|
MultiDataSet rightMDS = BertIterator.builder()
|
|
.tokenizer(testPairHelper.getTokenizer())
|
|
.minibatchSize(minibatchSize)
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testPairHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, longL * 10) //random big num guaranteed to be longer than either
|
|
.sentenceProvider(new TestSentenceHelper(true, numOfSentencesinIter).getSentenceProvider())
|
|
.padMinibatches(true)
|
|
.build().next();
|
|
|
|
MultiDataSet pairMDS = BertIterator.builder()
|
|
.tokenizer(testPairHelper.getTokenizer())
|
|
.minibatchSize(minibatchSize)
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testPairHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, maxL)
|
|
.sentencePairProvider(testPairHelper.getPairSentenceProvider())
|
|
.padMinibatches(true)
|
|
.build().next();
|
|
|
|
//CHECK FEATURES
|
|
INDArray combinedFeat = Nd4j.create(DataType.INT, minibatchSize, maxL);
|
|
//left side
|
|
INDArray leftFeatures = leftMDS.getFeatures(0);
|
|
INDArray topLSentFeat = leftFeatures.getRow(0).get(NDArrayIndex.interval(0, shortL));
|
|
INDArray midLSentFeat = leftFeatures.getRow(1).get(NDArrayIndex.interval(0, maxL - shortL));
|
|
INDArray bottomLSentFeat = leftFeatures.getRow(2).get(NDArrayIndex.interval(0, sent1L));
|
|
//right side
|
|
INDArray rightFeatures = rightMDS.getFeatures(0);
|
|
INDArray topRSentFeat = rightFeatures.getRow(0).get(NDArrayIndex.interval(0, maxL - shortL));
|
|
INDArray midRSentFeat = rightFeatures.getRow(1).get(NDArrayIndex.interval(0, shortL));
|
|
INDArray bottomRSentFeat = rightFeatures.getRow(2).get(NDArrayIndex.interval(0, sent2L));
|
|
//expected pair
|
|
combinedFeat.getRow(0).addi(Nd4j.hstack(topLSentFeat, topRSentFeat));
|
|
combinedFeat.getRow(1).addi(Nd4j.hstack(midLSentFeat, midRSentFeat));
|
|
combinedFeat.getRow(2).get(NDArrayIndex.interval(0, sent1L + sent2L)).addi(Nd4j.hstack(bottomLSentFeat, bottomRSentFeat));
|
|
|
|
assertEquals(maxL, pairMDS.getFeatures(0).shape()[1]);
|
|
assertArrayEquals(combinedFeat.shape(), pairMDS.getFeatures(0).shape());
|
|
assertEquals(combinedFeat, pairMDS.getFeatures(0));
|
|
|
|
//CHECK SEGMENT ID
|
|
INDArray combinedFetSeg = Nd4j.create(DataType.INT, minibatchSize, maxL);
|
|
combinedFetSeg.get(NDArrayIndex.point(0), NDArrayIndex.interval(shortL, maxL)).addi(1);
|
|
combinedFetSeg.get(NDArrayIndex.point(1), NDArrayIndex.interval(maxL - shortL, maxL)).addi(1);
|
|
combinedFetSeg.get(NDArrayIndex.point(2), NDArrayIndex.interval(sent1L, sent1L + sent2L)).addi(1);
|
|
assertArrayEquals(combinedFetSeg.shape(), pairMDS.getFeatures(1).shape());
|
|
assertEquals(maxL, combinedFetSeg.shape()[1]);
|
|
assertEquals(combinedFetSeg, pairMDS.getFeatures(1));
|
|
|
|
testPairHelper.getPairSentenceProvider().reset();
|
|
}
|
|
}
|
|
|
|
@Test
|
|
public void testSentencePairFeaturizer() throws IOException {
|
|
int minibatchSize = 2;
|
|
TestSentencePairsHelper testPairHelper = new TestSentencePairsHelper(minibatchSize);
|
|
BertIterator b = BertIterator.builder()
|
|
.tokenizer(testPairHelper.getTokenizer())
|
|
.minibatchSize(minibatchSize)
|
|
.padMinibatches(true)
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(testPairHelper.getTokenizer().getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION)
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, 128)
|
|
.sentencePairProvider(testPairHelper.getPairSentenceProvider())
|
|
.prependToken("[CLS]")
|
|
.appendToken("[SEP]")
|
|
.build();
|
|
MultiDataSet mds = b.next();
|
|
INDArray[] featuresArr = mds.getFeatures();
|
|
INDArray[] featuresMaskArr = mds.getFeaturesMaskArrays();
|
|
|
|
Pair<INDArray[], INDArray[]> p = b.featurizeSentencePairs(testPairHelper.getSentencePairs());
|
|
assertEquals(p.getFirst().length, 2);
|
|
assertEquals(featuresArr[0], p.getFirst()[0]);
|
|
assertEquals(featuresArr[1], p.getFirst()[1]);
|
|
assertEquals(featuresMaskArr[0], p.getSecond()[0]);
|
|
}
|
|
|
|
/**
|
|
* Returns three multidatasets (one from pair of sentences and the other two from single sentence lists) from bert iterator
|
|
* with given max lengths and whether to prepend/append
|
|
* Idea is the sentence pair dataset can be constructed from the single sentence datasets
|
|
*/
|
|
private Triple<MultiDataSet, MultiDataSet, MultiDataSet> generateMultiDataSets(Triple<Integer, Integer, Integer> maxLengths, boolean prependAppend, int numSentences) throws IOException {
|
|
BertWordPieceTokenizerFactory t = new BertWordPieceTokenizerFactory(pathToVocab, false, false, c);
|
|
int maxforPair = maxLengths.getFirst();
|
|
int maxPartOne = maxLengths.getSecond();
|
|
int maxPartTwo = maxLengths.getThird();
|
|
BertIterator.Builder commonBuilder;
|
|
commonBuilder = BertIterator.builder()
|
|
.tokenizer(t)
|
|
.minibatchSize(4)
|
|
.featureArrays(BertIterator.FeatureArrays.INDICES_MASK_SEGMENTID)
|
|
.vocabMap(t.getVocab())
|
|
.task(BertIterator.Task.SEQ_CLASSIFICATION);
|
|
BertIterator pairIter = commonBuilder
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, prependAppend ? maxforPair + 3 : maxforPair)
|
|
.sentencePairProvider(new TestSentencePairsHelper(numSentences).getPairSentenceProvider())
|
|
.prependToken(prependAppend ? "[CLS]" : null)
|
|
.appendToken(prependAppend ? "[SEP]" : null)
|
|
.build();
|
|
BertIterator leftIter = commonBuilder
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, prependAppend ? maxPartOne + 2 : maxPartOne)
|
|
.sentenceProvider(new TestSentenceHelper(numSentences).getSentenceProvider())
|
|
.prependToken(prependAppend ? "[CLS]" : null)
|
|
.appendToken(prependAppend ? "[SEP]" : null)
|
|
.build();
|
|
BertIterator rightIter = commonBuilder
|
|
.lengthHandling(BertIterator.LengthHandling.FIXED_LENGTH, prependAppend ? maxPartTwo + 1 : maxPartTwo)
|
|
.sentenceProvider(new TestSentenceHelper(true, numSentences).getSentenceProvider())
|
|
.prependToken(null)
|
|
.appendToken(prependAppend ? "[SEP]" : null)
|
|
.build();
|
|
return new Triple<>(pairIter.next(), leftIter.next(), rightIter.next());
|
|
}
|
|
|
|
@Getter
|
|
private static class TestSentencePairsHelper {
|
|
|
|
private List<String> sentencesLeft;
|
|
private List<String> sentencesRight;
|
|
private List<Pair<String, String>> sentencePairs;
|
|
private List<List<String>> tokenizedSentencesLeft;
|
|
private List<List<String>> tokenizedSentencesRight;
|
|
private List<String> labels;
|
|
private int shortL;
|
|
private int longL;
|
|
private int sentenceALen;
|
|
private int sentenceBLen;
|
|
private BertWordPieceTokenizerFactory tokenizer;
|
|
private CollectionLabeledPairSentenceProvider pairSentenceProvider;
|
|
|
|
private TestSentencePairsHelper() throws IOException {
|
|
this(3);
|
|
}
|
|
|
|
private TestSentencePairsHelper(int minibatchSize) throws IOException {
|
|
sentencesLeft = new ArrayList<>();
|
|
sentencesRight = new ArrayList<>();
|
|
sentencePairs = new ArrayList<>();
|
|
labels = new ArrayList<>();
|
|
tokenizedSentencesLeft = new ArrayList<>();
|
|
tokenizedSentencesRight = new ArrayList<>();
|
|
tokenizer = new BertWordPieceTokenizerFactory(pathToVocab, false, false, c);
|
|
sentencesLeft.add(shortSentence);
|
|
sentencesRight.add(longSentence);
|
|
sentencePairs.add(new Pair<>(shortSentence, longSentence));
|
|
labels.add("positive");
|
|
if (minibatchSize > 1) {
|
|
sentencesLeft.add(longSentence);
|
|
sentencesRight.add(shortSentence);
|
|
sentencePairs.add(new Pair<>(longSentence, shortSentence));
|
|
labels.add("negative");
|
|
if (minibatchSize > 2) {
|
|
sentencesLeft.add(sentenceA);
|
|
sentencesRight.add(sentenceB);
|
|
sentencePairs.add(new Pair<>(sentenceA, sentenceB));
|
|
labels.add("positive");
|
|
}
|
|
}
|
|
for (int i = 0; i < minibatchSize; i++) {
|
|
List<String> tokensL = tokenizer.create(sentencesLeft.get(i)).getTokens();
|
|
List<String> tokensR = tokenizer.create(sentencesRight.get(i)).getTokens();
|
|
if (i == 0) {
|
|
shortL = tokensL.size();
|
|
longL = tokensR.size();
|
|
}
|
|
if (i == 2) {
|
|
sentenceALen = tokensL.size();
|
|
sentenceBLen = tokensR.size();
|
|
}
|
|
tokenizedSentencesLeft.add(tokensL);
|
|
tokenizedSentencesRight.add(tokensR);
|
|
}
|
|
pairSentenceProvider = new CollectionLabeledPairSentenceProvider(sentencesLeft, sentencesRight, labels, null);
|
|
}
|
|
}
|
|
|
|
@Getter
|
|
private static class TestSentenceHelper {
|
|
|
|
private List<String> sentences;
|
|
private List<List<String>> tokenizedSentences;
|
|
private List<String> labels;
|
|
private int shortestL = 0;
|
|
private int longestL = 0;
|
|
private BertWordPieceTokenizerFactory tokenizer;
|
|
private CollectionLabeledSentenceProvider sentenceProvider;
|
|
|
|
private TestSentenceHelper() throws IOException {
|
|
this(false, 2);
|
|
}
|
|
|
|
private TestSentenceHelper(int minibatchSize) throws IOException {
|
|
this(false, minibatchSize);
|
|
}
|
|
|
|
private TestSentenceHelper(boolean alternateOrder) throws IOException {
|
|
this(false, 3);
|
|
}
|
|
|
|
private TestSentenceHelper(boolean alternateOrder, int minibatchSize) throws IOException {
|
|
sentences = new ArrayList<>();
|
|
labels = new ArrayList<>();
|
|
tokenizedSentences = new ArrayList<>();
|
|
tokenizer = new BertWordPieceTokenizerFactory(pathToVocab, false, false, c);
|
|
if (!alternateOrder) {
|
|
sentences.add(shortSentence);
|
|
labels.add("positive");
|
|
if (minibatchSize > 1) {
|
|
sentences.add(longSentence);
|
|
labels.add("negative");
|
|
if (minibatchSize > 2) {
|
|
sentences.add(sentenceA);
|
|
labels.add("positive");
|
|
}
|
|
}
|
|
} else {
|
|
sentences.add(longSentence);
|
|
labels.add("negative");
|
|
if (minibatchSize > 1) {
|
|
sentences.add(shortSentence);
|
|
labels.add("positive");
|
|
if (minibatchSize > 2) {
|
|
sentences.add(sentenceB);
|
|
labels.add("positive");
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < sentences.size(); i++) {
|
|
List<String> tokenizedSentence = tokenizer.create(sentences.get(i)).getTokens();
|
|
if (i == 0)
|
|
shortestL = tokenizedSentence.size();
|
|
if (tokenizedSentence.size() > longestL)
|
|
longestL = tokenizedSentence.size();
|
|
if (tokenizedSentence.size() < shortestL)
|
|
shortestL = tokenizedSentence.size();
|
|
tokenizedSentences.add(tokenizedSentence);
|
|
}
|
|
sentenceProvider = new CollectionLabeledSentenceProvider(sentences, labels, null);
|
|
}
|
|
}
|
|
|
|
}
|