191 lines
7.1 KiB
C++
191 lines
7.1 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2020 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <numeric>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void concatMKLDNN(const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
|
|
|
|
// data type
|
|
dnnl::memory::data_type type;
|
|
if(output.dataType() == DataType::FLOAT32)
|
|
type = dnnl::memory::data_type::f32;
|
|
else if(output.dataType() == DataType::HALF)
|
|
type = dnnl::memory::data_type::f16;
|
|
else if(output.dataType() == DataType::BFLOAT16)
|
|
type = dnnl::memory::data_type::bf16;
|
|
else if(output.dataType() == DataType::UINT8)
|
|
type = dnnl::memory::data_type::u8;
|
|
else
|
|
type = dnnl::memory::data_type::s8;
|
|
|
|
std::vector<dnnl::memory::desc> x_user_md(inArrs.size()), x_mkl_md(inArrs.size());
|
|
|
|
// inputs
|
|
for (int i = 0; i < inArrs.size(); ++i) {
|
|
|
|
dnnl::memory::dims dims = inArrs[i]->getShapeAsFlatVector();
|
|
x_user_md[i] = x_mkl_md[i] = dnnl::memory::desc(dims, type, mkldnnUtils::getFormat(*inArrs[i]));
|
|
mkldnnUtils::setBlockStrides(*inArrs[i], x_user_md[i]);
|
|
}
|
|
|
|
// output
|
|
dnnl::memory::dims dims = output.getShapeAsFlatVector();
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, mkldnnUtils::getFormat(output));
|
|
mkldnnUtils::setBlockStrides(output, z_user_md);
|
|
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
dnnl::concat::primitive_desc op_prim_desc(axis, x_mkl_md, engine);
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// inputs
|
|
for (int i = 0; i < inArrs.size(); ++i)
|
|
mkldnnUtils::loadDataToMklStream(*inArrs[i], engine, stream, x_user_md[i], op_prim_desc.src_desc(i), args[DNNL_ARG_MULTIPLE_SRC + i]);
|
|
|
|
// outputs
|
|
auto z_user_mem = mkldnnUtils::loadDataToMklStream(output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
|
|
|
|
// primitive execution
|
|
dnnl::concat(op_prim_desc).execute(stream, args);
|
|
|
|
// reorder output if necessary
|
|
if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
|
|
dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
|
|
|
|
stream.wait();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(concat, ENGINE_CPU) {
|
|
|
|
REQUIRE_TRUE(block.width() > 0, 0, "CONCAT MKLDNN op: No input arrays were provided");
|
|
|
|
const bool isAxisInLastArr = block.getBArguments()->size() == 0 ? false : B_ARG(0);
|
|
|
|
const int numOfInArrs = isAxisInLastArr ? block.width() - 1 : block.width();
|
|
|
|
// first of all take into account possible presence of empty arrays
|
|
// also if scalar is present -> copy its value to vector with length=1
|
|
std::vector<const NDArray*> nonEmptyArrs;
|
|
std::vector<int> arrsToDelete;
|
|
int index = 0;
|
|
bool allOfSameType = true;
|
|
auto rankOfFirstArr = block.width() > 0 ? INPUT_VARIABLE(0)->rankOf() : 0;
|
|
auto typeOfFirstArr = block.width() > 0 ? INPUT_VARIABLE(0)->dataType() : block.dataType();
|
|
|
|
for(int i = 0; i < numOfInArrs; ++i) {
|
|
auto input = INPUT_VARIABLE(i);
|
|
auto currentRank = input->rankOf();
|
|
|
|
if(!input->isEmpty()) {
|
|
|
|
allOfSameType &= (typeOfFirstArr == input->dataType());
|
|
|
|
if(input->rankOf() == 0) {
|
|
auto vec = new NDArray('c', {1}, input->dataType(), block.launchContext());
|
|
vec->assign(input);
|
|
nonEmptyArrs.push_back(vec);
|
|
arrsToDelete.push_back(index);
|
|
}
|
|
else{
|
|
nonEmptyArrs.push_back(input);
|
|
}
|
|
++index;
|
|
}
|
|
}
|
|
|
|
const int numOfNonEmptyArrs = nonEmptyArrs.size();
|
|
|
|
if(numOfNonEmptyArrs == 0){
|
|
//All inputs are empty arrays -> return empty, mainly for TF import compatibility (no op)
|
|
REQUIRE_TRUE(OUTPUT_VARIABLE(0)->isEmpty(), 0, "CONCAT MKLDNN op: If all input variables are empty, output must be empty");
|
|
return Status::OK();
|
|
}
|
|
|
|
const int rank = nonEmptyArrs[0]->rankOf(); // look up to first non-empty array
|
|
int axis = isAxisInLastArr ? INPUT_VARIABLE(block.width() - 1)->e<int>(0) : INT_ARG(0);
|
|
if(axis < 0){
|
|
axis += rank;
|
|
}
|
|
|
|
// ******** input validation ******** //
|
|
REQUIRE_TRUE(allOfSameType, 0, "CONCAT MKLDNN op: all of input arrays must have same type !");
|
|
REQUIRE_TRUE(nonEmptyArrs[0]->dataType() == OUTPUT_VARIABLE(0)->dataType(), 0, "CONCAT MKLDNN op: output array should have the same type as inputs arrays !");
|
|
REQUIRE_TRUE(0 <= axis && (axis < rank || (axis == 0 && rank == 0)), 0, "CONCAT MKLDNN op: input axis must be in range [0, %i], but got %i instead!", rank-1, axis);
|
|
|
|
for(int i = 1; i < numOfNonEmptyArrs; ++i)
|
|
REQUIRE_TRUE(nonEmptyArrs[i]->rankOf() == rank, 0, "CONCAT MKLDNN op: all input arrays must have the same rank !");
|
|
|
|
for(int i = 1; i < numOfNonEmptyArrs; ++i) {
|
|
for(int dim = 0; dim < rank; ++dim)
|
|
if(dim != axis)
|
|
REQUIRE_TRUE(nonEmptyArrs[i]->sizeAt(dim) == nonEmptyArrs[0]->sizeAt(dim), 0, "CONCAT MKLDNN op: all input arrays must have the same dimensions (except those on input axis) !");
|
|
}
|
|
// ******** end of input validation ******** //
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
if(numOfNonEmptyArrs == 1)
|
|
output->assign(nonEmptyArrs[0]);
|
|
else
|
|
concatMKLDNN(nonEmptyArrs, *output, axis);
|
|
|
|
// delete dynamically allocated vectors with length=1
|
|
for(int index : arrsToDelete)
|
|
delete nonEmptyArrs[index];
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(concat, ENGINE_CPU) {
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
const auto zType = z->dataType();
|
|
|
|
const bool isAxisInLastArr = block.getBArguments()->size() == 0 ? false : B_ARG(0);
|
|
const int numOfInArrs = isAxisInLastArr ? block.width() - 1 : block.width();
|
|
|
|
return z->rankOf() < 7 && numOfInArrs <= 3072
|
|
&& (zType==DataType::FLOAT32 || zType==DataType::HALF || zType==DataType::BFLOAT16 || zType==DataType::UINT8 || zType==DataType::INT8);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|