cavis/libnd4j/include/ops/declarable/platform/cudnn/batchnorm.cu

569 lines
26 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include "cudnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
namespace sd {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////////
static void batchnormCUDNN(const LaunchContext* context,
const NDArray* input, const NDArray* mean, const NDArray* variance,
const NDArray* gamma, const NDArray* beta,
NDArray* output,
const double epsilon, const bool isSpatialMode) {
// input, output -> 4D:nchw, 5D:ncdhw
// mean, variance, gamma, beta -> 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM_MODE_SPATIAL mode
// -> 1xCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM_MODE_PER_ACTIVATION mode
const cudnnDataType_t dataType = cudnnDataType(input->dataType());
const int xRank = input->rankOf();
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
if (err != 0) throw sd::cuda_exception::build("conv2dCUDNN: can't set stream for cuDNN", err);
const std::vector<int> xShape = input->getShapeAsVectorInt(); // input and output have same shapes
std::vector<int> paramsShape, paramsStrides; // mean, variance, gamma and beta have same shapes
if(isSpatialMode) { // 1xCx1x1
const int iC = mean->lengthOf();
const int stride0 = mean->strideAt(0);
paramsShape = xRank == 4 ? std::vector<int>({1, iC, 1, 1}) : std::vector<int>({1, iC, 1, 1, 1});
paramsStrides = xRank == 4 ? std::vector<int>({iC*stride0, stride0, 1, 1}) : std::vector<int>({iC*stride0, stride0, 1, 1, 1});
}
else {
paramsShape = mean->getShapeAsVectorInt();
paramsStrides = xRank == 4 ? std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3)}) : std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3), (int)mean->strideAt(4)});
}
std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3)};
std::vector<int> zStrides = {(int)output->strideAt(0), (int)output->strideAt(1), (int)output->strideAt(2), (int)output->strideAt(3)};
if(xRank > 4) { // 5D
xStrides.push_back((int)input->strideAt(4));
zStrides.push_back((int)output->strideAt(4));
}
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
// input descriptor
cudnnTensorDescriptor_t x;
cudnnCreateTensorDescriptor(&x);
if(input->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(x, format, dataType, xRank, xShape.data());
else
err = cudnnSetTensorNdDescriptor(x, dataType, xRank, xShape.data(), xStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
// output descriptor
cudnnTensorDescriptor_t z;
cudnnCreateTensorDescriptor(&z);
if(output->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(z, format, dataType, xRank, xShape.data());
else
err = cudnnSetTensorNdDescriptor(z, dataType, xRank, xShape.data(), zStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for output failed", err);
// mean, variance, gamma and beta descriptor, the same descriptor for all of them
cudnnTensorDescriptor_t params;
cudnnCreateTensorDescriptor(&params);
if(mean->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(params, format, dataType, xRank, paramsShape.data());
else
err = cudnnSetTensorNdDescriptor(params, dataType, xRank, paramsShape.data(), paramsStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for mean/variance/gamma/beta failed", err);
// provide scaling parameters
const float alpha32(1), beta32(0);
const double alpha64(1), beta64(0);
const void* ptrAlpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
const void* ptrBeta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
// calculations
err = cudnnBatchNormalizationForwardInference(*handle, isSpatialMode ? CUDNN_BATCHNORM_SPATIAL : CUDNN_BATCHNORM_PER_ACTIVATION,
ptrAlpha, ptrBeta,
x, input->specialBuffer(),
z, output->specialBuffer(),
params,
gamma->specialBuffer(), beta->specialBuffer(),
mean->specialBuffer(), variance->specialBuffer(), epsilon);
if (err != 0) throw sd::cuda_exception::build("batchnormCUDNN: cudnnBatchNormalizationForwardInference failed", err);
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
if (cudaErr != 0)
throw cuda_exception::build("batchnormCUDNN: cudaStreamSynchronize failed !", cudaErr);
NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
}
//////////////////////////////////////////////////////////////////////////
static void batchnormBpCUDNN(const LaunchContext* context,
const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* gradO,
NDArray* gradI, NDArray* gradG, NDArray* gradB,
const double epsilon, const bool isSpatialMode) {
// input, gradO, gradI -> 4D:nchw, 5D:ncdhw
// mean, variance, gamma, beta, gradM, gradV, gradG, gradB -> 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM_MODE_SPATIAL mode
// -> 1xCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM_MODE_PER_ACTIVATION mode
const cudnnDataType_t dataType = cudnnDataType(input->dataType());
const int xRank = input->rankOf();
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: can't set stream for cuDNN", err);
const std::vector<int> xShape = input->getShapeAsVectorInt(); // input and output have same shapes
std::vector<int> paramsShape, paramsStrides; // mean, variance, gamma and beta have same shapes
if(isSpatialMode) { // 1xCx1x1
const int iC = mean->lengthOf();
const int stride0 = mean->strideAt(0);
paramsShape = xRank == 4 ? std::vector<int>({1, iC, 1, 1}) : std::vector<int>({1, iC, 1, 1, 1});
paramsStrides = xRank == 4 ? std::vector<int>({iC*stride0, stride0, 1, 1}) : std::vector<int>({iC*stride0, stride0, 1, 1, 1});
}
else {
paramsShape = mean->getShapeAsVectorInt();
paramsStrides = xRank == 4 ? std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3)}) : std::vector<int>({(int)mean->strideAt(0), (int)mean->strideAt(1), (int)mean->strideAt(2), (int)mean->strideAt(3), (int)mean->strideAt(4)});
}
std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3)};
std::vector<int> dxStrides = {(int)gradI->strideAt(0), (int)gradI->strideAt(1), (int)gradI->strideAt(2), (int)gradI->strideAt(3)};
std::vector<int> dzStrides = {(int)gradO->strideAt(0), (int)gradO->strideAt(1), (int)gradO->strideAt(2), (int)gradO->strideAt(3)};
if(xRank > 4) { // 5D
xStrides.push_back((int)input->strideAt(4));
dxStrides.push_back((int)gradI->strideAt(4));
dzStrides.push_back((int)gradO->strideAt(4));
}
cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
// input descriptor
cudnnTensorDescriptor_t x;
cudnnCreateTensorDescriptor(&x);
if(input->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(x, format, dataType, xRank, xShape.data());
else
err = cudnnSetTensorNdDescriptor(x, dataType, xRank, xShape.data(), xStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
// gradO descriptor
cudnnTensorDescriptor_t dz;
cudnnCreateTensorDescriptor(&dz);
if(gradO->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(dz, format, dataType, xRank, xShape.data());
else
err = cudnnSetTensorNdDescriptor(dz, dataType, xRank, xShape.data(), dzStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradO failed", err);
// gradI descriptor
cudnnTensorDescriptor_t dx;
cudnnCreateTensorDescriptor(&dx);
if(input->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(dx, format, dataType, xRank, xShape.data());
else
err = cudnnSetTensorNdDescriptor(dx, dataType, xRank, xShape.data(), dxStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradI failed", err);
// mean, variance, gamma, gradG and gradB descriptor, the same descriptor for all of them
cudnnTensorDescriptor_t params;
cudnnCreateTensorDescriptor(&params);
if(mean->ews() == 1)
err = cudnnSetTensorNdDescriptorEx(params, format, dataType, xRank, paramsShape.data());
else
err = cudnnSetTensorNdDescriptor(params, dataType, xRank, paramsShape.data(), paramsStrides.data());
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for mean/variance/gamma/gradG/gradB failed", err);
// provide scaling parameters
const float alpha32(1), beta32(0);
double alpha64(1), beta64(0);
const void* ptrAlpha = input->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
const void* ptrBeta = input->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
NDArray::prepareSpecialUse({gradI, gradG, gradB}, {input, mean, variance, gamma, gradO});
// calculations
// TODO: we can use cache here
err = cudnnBatchNormalizationBackward(*handle, isSpatialMode ? CUDNN_BATCHNORM_SPATIAL : CUDNN_BATCHNORM_PER_ACTIVATION,
ptrAlpha, ptrBeta, ptrAlpha, ptrBeta,
x, input->specialBuffer(),
dz, gradO->specialBuffer(),
dx, gradI->specialBuffer(),
params,
gamma->specialBuffer(), gradG->specialBuffer(), gradB->specialBuffer(),
epsilon,
nullptr/*mean->specialBuffer()*/, nullptr/*variance->specialBuffer()*/);
if (err != 0) throw sd::cuda_exception::build("batchnormBpCUDNN: cudnnBatchNormalizationBackward failed", err);
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
if (cudaErr != 0)
throw cuda_exception::build("batchnormBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
NDArray::registerSpecialUse({gradI, gradG, gradB}, {input, mean, variance, gamma, gradO});
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(batchnorm, ENGINE_CUDA) {
auto input = INPUT_VARIABLE(0);
auto mean = INPUT_VARIABLE(1);
auto variance = INPUT_VARIABLE(2);
NDArray* gamma = nullptr;
NDArray* beta = nullptr;
auto output = OUTPUT_VARIABLE(0);
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const double epsilon = T_ARG(0);
if(applyScale)
gamma = INPUT_VARIABLE(3);
if(applyOffset)
beta = INPUT_VARIABLE(3 + (int)applyScale);
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM CUDNN op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
std::vector<Nd4jLong> expShape;
if(numOfAxes == 1)
expShape.push_back(input->sizeAt(axes[0]));
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
expShape = std::vector<Nd4jLong>(inRank, 1);
for(uint i = 0; i < numOfAxes; ++i)
expShape[axes[i]] = input->sizeAt(axes[i]);
}
REQUIRE_TRUE(mean->isSameShape(expShape) , 0, "BATCHNORM CUDNN op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
if(gamma)
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
if(beta)
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM CUDNN op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
// types of all input arrays should be the same
for(int i = 1; i < block.width(); ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM CUDNN op: types of all input arrays should be the same !");
// cudnn supports NCHW format only
const bool needPermut = axes.size() == 1 && mean->lengthOf() == input->sizeAt(-1);
if(needPermut) { // if NHWC
std::vector<int> perm = inRank == 4 ? std::vector<int>({0, 3, 1, 2}) : std::vector<int>({0, 4, 1, 2, 3}); // NHWC -> NCHW
input = new NDArray(input->permute(perm));
output = new NDArray(output->permute(perm));
}
// cudnn requires gamma and beta to be non-nullptr
if(!applyScale) {
gamma = new NDArray(mean);
*gamma = 1;
}
if(!applyOffset) {
beta = new NDArray(mean);
*beta = 0;
}
// calculations
batchnormCUDNN(block.launchContext(), input, mean, variance, gamma, beta, output, epsilon, axes.size() == 1);
if(needPermut) {
delete input;
delete output;
}
if(!applyScale)
delete gamma;
if(!applyOffset)
delete beta;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(batchnorm, ENGINE_CUDA) {
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
NDArray* input = INPUT_VARIABLE(0);
NDArray* mean = INPUT_VARIABLE(1);
NDArray* variance = INPUT_VARIABLE(2);
NDArray* gamma = applyScale ? INPUT_VARIABLE(3) : nullptr;
NDArray* beta = applyOffset ? INPUT_VARIABLE(3 + (int)applyScale) : nullptr;
const int numOfIntArgs = block.getIArguments()->size();
const int xRank = input->rankOf();
// *********************************** //
if(xRank != 4 && xRank != 5)
return false;
// *********************************** //
const bool badType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
if(badType)
return false;
// *********************************** //
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(xRank-1); // default dimension to reduce along is last dimension
if(axes.size() != 1 && axes.size() != 3 && axes.size() != 4)
return false;
// *********************************** //
bool allParamsHaveSameShapeAndStrides = shape::haveSameShapeAndStrides(mean->shapeInfo(), variance->shapeInfo());
if(gamma)
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gamma->shapeInfo());
if(beta)
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), beta->shapeInfo());
if(!allParamsHaveSameShapeAndStrides)
return false;
// *********************************** //
bool isFormatGood = false;
if(axes.size() == 1)
isFormatGood = mean->lengthOf() == input->sizeAt(1) || mean->lengthOf() == input->sizeAt(-1); // mean [C]
else {
auto inputShapeModif = input->getShapeAsVector(); // [dim0,dim1,dim2,dim3] 4D or [dim0,dim1,dim2,dim3,dim4]
inputShapeModif[0] = 1;
isFormatGood = mean->isSameShape(inputShapeModif); // mean [1,dim1,dim2,dim3] 4D or [1,dim1,dim2,dim3,dim4]
}
if(!isFormatGood)
return false;
return true;
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(batchnorm_bp, ENGINE_CUDA) {
NDArray* input = INPUT_VARIABLE(0);
NDArray* mean = INPUT_VARIABLE(1);
NDArray* variance = INPUT_VARIABLE(2);
NDArray* gamma = nullptr;
NDArray* beta = nullptr;
NDArray* gradO = INPUT_VARIABLE(block.width() - 1); // next epsilon
NDArray* gradI = OUTPUT_VARIABLE(0);
NDArray* gradM = OUTPUT_VARIABLE(1);
NDArray* gradV = OUTPUT_VARIABLE(2);
NDArray* gradG = nullptr;
NDArray* gradB = nullptr;
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const float epsilon = T_ARG(0);
if(applyScale) {
gamma = INPUT_VARIABLE(3);
gradG = OUTPUT_VARIABLE(3);
}
if(applyOffset) {
beta = INPUT_VARIABLE(3 + (int)applyScale);
gradB = OUTPUT_VARIABLE(3 + (int)applyScale);
}
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_BP CUDNN op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank);
// evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes
// for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5}
std::vector<Nd4jLong> expShape;
if(numOfAxes == 1)
expShape.push_back(input->sizeAt(axes[0]));
else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3}
expShape = std::vector<Nd4jLong>(inRank, 1);
for(uint i = 0; i < numOfAxes; ++i)
expShape[axes[i]] = input->sizeAt(axes[i]);
}
REQUIRE_TRUE(mean->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str());
if(gamma)
REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str());
if(beta)
REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM_BP CUDNN op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str());
REQUIRE_TRUE(input->isSameShape(gradO), 0, "BATCHNORM_BP CUDNN op: wrong shape of output gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
// types of all input arrays should be the same (except gradO)
for(int i = 1; i < block.width() - 2; ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP CUDNN op: types of arrays (input, mean, variance, gamma, beta) should be the same !");
// cudnn supports NCHW format only
const bool needPermut = axes.size() == 1 && mean->lengthOf() != input->sizeAt(1);
if(needPermut) { // if NHWC
std::vector<int> perm = inRank == 4 ? std::vector<int>({0, 3, 1, 2}) : std::vector<int>({0, 4, 1, 2, 3}); // NHWC -> NCHW
input = new NDArray(input->permute(perm));
gradO = new NDArray(gradO->permute(perm));
gradI = new NDArray(gradI->permute(perm));
}
// cudnn requires gamma, gradG, gradB to be non-nullptr
if(!applyScale) {
gamma = new NDArray(mean);
gradG = new NDArray(mean);
*gamma = 1;
}
if(!applyOffset)
gradB = new NDArray(mean);
// calculations
batchnormBpCUDNN(block.launchContext(), input, mean, variance, gamma, gradO, gradI, gradG, gradB, epsilon, axes.size() == 1);
*gradM = 0; // put zeros so far
*gradV = 0; // put zeros so far
if(needPermut) {
delete input;
delete gradO;
delete gradI;
}
if(!applyScale) {
delete gamma;
delete gradG;
}
if(!applyOffset)
delete gradB;
return Status::OK();
}
PLATFORM_CHECK(batchnorm_bp, ENGINE_CUDA) {
NDArray* input = INPUT_VARIABLE(0);
NDArray* mean = INPUT_VARIABLE(1);
NDArray* variance = INPUT_VARIABLE(2);
NDArray* gamma = nullptr;
NDArray* beta = nullptr;
NDArray* gradO = INPUT_VARIABLE(block.width() - 1); // next epsilon
NDArray* gradI = OUTPUT_VARIABLE(0);
NDArray* gradM = OUTPUT_VARIABLE(1);
NDArray* gradV = OUTPUT_VARIABLE(2);
NDArray* gradG = nullptr;
NDArray* gradB = nullptr;
const int numOfIntArgs = block.getIArguments()->size();
const int xRank = input->rankOf();
// *********************************** //
if(xRank != 4 && xRank != 5)
return false;
// *********************************** //
const bool badType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
if(badType)
return false;
// *********************************** //
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(xRank-1); // default dimension to reduce along is last dimension
if(axes.size() != 1 && axes.size() != 3 && axes.size() != 4)
return false;
// *********************************** //
bool allParamsHaveSameShapeAndStrides = shape::haveSameShapeAndStrides(mean->shapeInfo(), variance->shapeInfo());
if(gamma)
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gamma->shapeInfo());
if(gradG)
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gradG->shapeInfo());
if(gradB)
allParamsHaveSameShapeAndStrides &= shape::haveSameShapeAndStrides(mean->shapeInfo(), gradB->shapeInfo());
if(!allParamsHaveSameShapeAndStrides)
return false;
// *********************************** //
bool isFormatGood = false;
if(axes.size() == 1)
isFormatGood = mean->lengthOf() == input->sizeAt(1) || mean->lengthOf() == input->sizeAt(-1); // mean [C]
else {
auto inputShapeModif = input->getShapeAsVector(); // [dim0,dim1,dim2,dim3] 4D or [dim0,dim1,dim2,dim3,dim4]
inputShapeModif[0] = 1;
isFormatGood = mean->isSameShape(inputShapeModif); // mean [1,dim1,dim2,dim3] 4D or [1,dim1,dim2,dim3,dim4]
}
if(!isFormatGood)
return false;
return true;
}
}
}
}