cavis/libnd4j/include/ops/declarable/headers/updaters.h

211 lines
6.1 KiB
C++

/*******************************************************************************
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#ifndef LIBND4J_HEADERS_UPDATERS_H
#define LIBND4J_HEADERS_UPDATERS_H
#include <ops/declarable/headers/common.h>
#include <ops/declarable/CustomOperations.h>
#include <helpers/ConstantTadHelper.h>
#include <execution/Threads.h>
#include <ops/declarable/helpers/updatersHelpers.h>
namespace sd {
namespace ops {
/**
* SGD updater
* Input arrays:
* 0 - input array with gradients.
* Optional:
* 1 - scalar learning rate value
* Optional:
* T args
* 0 - scalar learning rate value
*/
#if NOT_EXCLUDED(OP_sgd_updater)
DECLARE_CONFIGURABLE_OP(sgd_updater, 1, 1, true, 0, 0);
#endif
/**
* RmsPropUpdater updater
* Input arrays:
* 0 - input array with gradients.
* 1 - Initial state
* Optional:
* 2 - scalar learning rate value
* 3 - scalar rms decay
* 4 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - scalar rms decay
* 2 - epsilon
*/
#if NOT_EXCLUDED(OP_rms_prop_updater)
DECLARE_CONFIGURABLE_OP(rms_prop_updater, 2, 2, true, 0, 0);
#endif
// AdaGrad
/* Input arrays :
* 0 - input array with gradients.
* 1 - historical grad state
* Optional :
* 2 - scalar learning rate value
* 3 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - epsilon
*/
#if NOT_EXCLUDED(OP_ada_grad_updater)
DECLARE_CONFIGURABLE_OP(ada_grad_updater, 2, 2, true, 0, 0);
#endif
// AdaMax
/* Input arrays :
* 0 - input array with gradients.
* 1 - gradient state V
* 2 - gradient state M
* Optional :
* 3 - scalar learning rate value
* 4 - beta 1 value
* 5 - beta 2 value
* 6 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - beta 1 value
* 2 - beta 2 value
* 3 - epsilon
* Optional:
* I args
* 0 - iteration
*/
#if NOT_EXCLUDED(OP_ada_max_updater)
DECLARE_CONFIGURABLE_OP(ada_max_updater, 3, 3, true, 0, 0);
#endif
// Nesterov's momentum
/* Input arrays :
* 0 - input array with gradients.
* 1 - V grad state
* Optional :
* 2 - scalar learning rate value
* 3 - scalar momentum value
* Optional:
* T args
* 0 - learning rate value
* 1 - momentum value
*/
#if NOT_EXCLUDED(OP_nesterovs_updater)
DECLARE_CONFIGURABLE_OP(nesterovs_updater, 2, 2, true, 0, 0);
#endif
// Adam
/* Input arrays :
* 0 - input array with gradients.
* 1 - gradient state V
* 2 - gradient state M
* Optional :
* 3 - scalar learning rate value
* 4 - beta 1 value
* 5 - beta 2 value
* 6 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - beta 1 value
* 2 - beta 2 value
* 3 - epsilon
* Optional:
* I args
* 0 - iteration
*/
#if NOT_EXCLUDED(OP_adam_updater)
DECLARE_CONFIGURABLE_OP(adam_updater, 3, 3, true, 0, 0);
#endif
// AdaDelta
/* Input arrays :
* 0 - input array with gradients.
* 1 - gradient state V
* 2 - gradient state M
* Optional :
* 3 - rho value
* 6 - epsilon
* Optional:
* T args
* 0 - rho
* 1 - epsilon
*/
#if NOT_EXCLUDED(OP_ada_delta_updater)
DECLARE_CONFIGURABLE_OP(ada_delta_updater, 3, 3, true, 0, 0);
#endif
// Nadam
/* Input arrays :
* 0 - input array with gradients.
* 1 - gradient state V
* 2 - gradient state M
* Optional :
* 3 - scalar learning rate value
* 4 - beta 1 value
* 5 - beta 2 value
* 6 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - beta 1 value
* 2 - beta 2 value
* 3 - epsilon
* Optional:
* I args
* 0 - iteration
*/
#if NOT_EXCLUDED(OP_nadam_updater)
DECLARE_CONFIGURABLE_OP(nadam_updater, 3, 3, true, 0, 0);
#endif
// AmsGrad
/* Input arrays :
* 0 - input array with gradients.
* 1 - gradient state V - sqrd gradients
* 2 - gradient state M - moving avg
* 3 - gradient state H - max
* Optional :
* 4 - scalar learning rate value
* 5 - beta 1 value
* 6 - beta 2 value
* 7 - epsilon
* Optional:
* T args
* 0 - scalar learning rate value
* 1 - beta 1 value
* 2 - beta 2 value
* 3 - epsilon
* Optional:
* I args
* 0 - iteration
*/
#if NOT_EXCLUDED(OP_ams_grad_updater)
DECLARE_CONFIGURABLE_OP(ams_grad_updater, 4, 4, true, 0, 0);
#endif
}
}
#endif