484 lines
31 KiB
Plaintext
484 lines
31 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void conv3dCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const int paddingMode, const bool isNCDHW, const int wFormat) {
|
|
|
|
// cudnn support only one format for weights {oC,iC,kD,kH,kW}
|
|
|
|
const int numDims = 5;
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const std::vector<int> pads = {pD, pH, pW};
|
|
const std::vector<int> filtStrides = {sD, sH, sW};
|
|
const std::vector<int> dilations = {dD, dH, dW};
|
|
|
|
const std::vector<int> xShape = {bS, iC, iD, iH, iW};
|
|
const std::vector<int> zShape = {bS, oC, oD, oH, oW};
|
|
const std::vector<int> wShape = {oC, iC, kD, kH, kW};
|
|
const std::vector<int> bShape = {1, oC, 1, 1, 1}; // {1, (isNCDHW ? oC : 1), 1, 1, (isNCDHW ? 1 : oC)};
|
|
|
|
const std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
const std::vector<int> zStrides = {(int)output->strideAt(0), (int)output->strideAt(1), (int)output->strideAt(2), (int)output->strideAt(3), (int)output->strideAt(4)};
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape.data(), xStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
|
|
|
// weights descriptor
|
|
cudnnFilterDescriptor_t w;
|
|
cudnnCreateFilterDescriptor(&w);
|
|
err = cudnnSetFilterNdDescriptor(w, cudnnDataType(weights->dataType()), CUDNN_TENSOR_NCHW, numDims, wShape.data());
|
|
if(err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnSetFilterNdDescriptor failed", err);
|
|
|
|
// output descriptor
|
|
cudnnTensorDescriptor_t z;
|
|
cudnnCreateTensorDescriptor(&z);
|
|
if(output->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(z, format, cudnnDataType(output->dataType()), numDims, zShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(z, cudnnDataType(output->dataType()), numDims, zShape.data(), zStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for output failed", err);
|
|
|
|
// description of convolution
|
|
cudnnConvolutionDescriptor_t conv;
|
|
cudnnCreateConvolutionDescriptor(&conv);
|
|
err = cudnnSetConvolutionNdDescriptor(conv, numDims-2, pads.data(), filtStrides.data(), dilations.data(), CUDNN_CROSS_CORRELATION, cudnnDataType(output->dataType()));
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnSetConvolutionNdDescriptor failed", err);
|
|
|
|
// algorithm description
|
|
cudnnConvolutionFwdAlgo_t algo;
|
|
cudnnConvolutionFwdAlgoPerf_t algoPerf;
|
|
int count = 0;
|
|
//err = cudnnGetConvolutionForwardAlgorithm(*handle, x, w, conv, z, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo);
|
|
err = cudnnFindConvolutionForwardAlgorithm(*handle, x, w, conv, z, 1, &count, &algoPerf);
|
|
if (err != 0 || count == 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnGetConvolutionForwardAlgorithm failed", err);
|
|
algo = algoPerf.algo;
|
|
|
|
|
|
// allocate auxiliary device memory, abbreviation ws means workspace
|
|
size_t wsSize;
|
|
err = cudnnGetConvolutionForwardWorkspaceSize(*handle, x, w, conv, z, algo, &wsSize);
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnGetConvolutionForwardWorkspaceSize failed", err);
|
|
void* wsData;
|
|
auto cudaErr = cudaMalloc(&wsData, wsSize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudaMalloc for auxiliary workspace memory failed", cudaErr);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, weights, bias});
|
|
|
|
// run calculation
|
|
err = cudnnConvolutionForward(*handle, alpha, x, input->specialBuffer(), w, weights->specialBuffer(), conv, algo, wsData, wsSize, beta, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnConvolutionForward failed", err);
|
|
|
|
// add bias if it is present
|
|
if (bias != nullptr) {
|
|
|
|
cudnnTensorDescriptor_t b;
|
|
cudnnCreateTensorDescriptor(&b);
|
|
err = cudnnSetTensorNdDescriptorEx(b, /*format*/CUDNN_TENSOR_NCHW, cudnnDataType(bias->dataType()), numDims, bShape.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnSetTensorNdDescriptor for bias failed", err);
|
|
err = cudnnAddTensor(*handle, alpha, b, bias->specialBuffer(), alpha, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudnnAddTensor bias failed", err);
|
|
}
|
|
|
|
// cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
// if (cudaErr != 0)
|
|
// throw cuda_exception::build("conv3dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
cudaErr = cudaFree(wsData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dCUDNN: cudaFree for auxiliary workspace memory failed", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({output}, {input, weights, bias});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void conv3dBpCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* weights, const NDArray* gradO,
|
|
NDArray* gradI, NDArray* gradW, NDArray* gradB,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const int paddingMode, const bool isNCDHW, const int wFormat) {
|
|
|
|
// cudnn supports only two formats {oC,iC,kD,kH,kW} and {oC,kD,kH,kW,iC} for weights/gradW
|
|
|
|
const int numDims = 5;
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const std::vector<int> pads = {pD, pH, pW};
|
|
const std::vector<int> filtStrides = {sD, sH, sW};
|
|
const std::vector<int> dilations = {dD, dH, dW};
|
|
|
|
const std::vector<int> xShape = {bS, iC, iD, iH, iW};
|
|
const std::vector<int> dzShape = {bS, oC, oD, oH, oW};
|
|
const std::vector<int> wShape = {oC, iC, kD, kH, kW};
|
|
const std::vector<int> dbShape = {1, (int)(isNCDHW ? oC : 1), 1, 1, (int)(isNCDHW ? 1 : oC)};
|
|
|
|
const std::vector<int> xStrides = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
const std::vector<int> dxStrides = {(int)gradI->strideAt(0), (int)gradI->strideAt(1), (int)gradI->strideAt(2), (int)gradI->strideAt(3), (int)gradI->strideAt(4)};
|
|
const std::vector<int> dzStrides = {(int)gradO->strideAt(0), (int)gradO->strideAt(1), (int)gradO->strideAt(2), (int)gradO->strideAt(3), (int)gradO->strideAt(4)};
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
cudnnTensorFormat_t formatW = 0 == wFormat ? format : (1 == wFormat ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC);
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape.data(), xStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
|
|
|
// gradO descriptor
|
|
cudnnTensorDescriptor_t dz;
|
|
cudnnCreateTensorDescriptor(&dz);
|
|
if(gradO->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(dz, format, cudnnDataType(gradO->dataType()), numDims, dzShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(dz, cudnnDataType(gradO->dataType()), numDims, dzShape.data(), dzStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradO failed", err);
|
|
|
|
// gradI descriptor
|
|
cudnnTensorDescriptor_t dx;
|
|
cudnnCreateTensorDescriptor(&dx);
|
|
if(gradI->ews() == 1)
|
|
err = cudnnSetTensorNdDescriptorEx(dx, format, cudnnDataType(gradI->dataType()), numDims, xShape.data());
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(dx, cudnnDataType(gradI->dataType()), numDims, xShape.data(), dxStrides.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradI failed", err);
|
|
|
|
// gradW descriptor
|
|
cudnnFilterDescriptor_t dw;
|
|
cudnnCreateFilterDescriptor(&dw);
|
|
err = cudnnSetFilterNdDescriptor(dw, cudnnDataType(gradW->dataType()), formatW, numDims, wShape.data());
|
|
if(err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetFilterNdDescriptor failed", err);
|
|
|
|
// description of convolution
|
|
cudnnConvolutionDescriptor_t conv;
|
|
cudnnCreateConvolutionDescriptor(&conv);
|
|
err = cudnnSetConvolutionNdDescriptor(conv, numDims-2, pads.data(), filtStrides.data(), dilations.data(), CUDNN_CROSS_CORRELATION, cudnnDataType(gradO->dataType()));
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetConvolutionNdDescriptor failed", err);
|
|
|
|
// gradW algorithm description
|
|
cudnnConvolutionBwdFilterAlgo_t algoGradW;
|
|
cudnnConvolutionBwdFilterAlgoPerf_t algoGradWPerf;
|
|
int count = 0;
|
|
//err = cudnnGetConvolutionBackwardFilterAlgorithm(*handle, x, dz, conv, dw, CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, 0, &algoGradW);
|
|
err = cudnnFindConvolutionBackwardFilterAlgorithm(*handle, x, dz, conv, dw, 1, &count, &algoGradWPerf);
|
|
if (err != 0 || count == 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnGetConvolutionBackwardFilterAlgorithm failed", err);
|
|
algoGradW = algoGradWPerf.algo;
|
|
|
|
// gradI algorithm description
|
|
cudnnConvolutionBwdDataAlgo_t algoGradI;
|
|
cudnnConvolutionBwdDataAlgoPerf_t algoGradIPerf;
|
|
//err = cudnnGetConvolutionBackwardDataAlgorithm(*handle, dw, dz, conv, x, CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, 0, &algoGradI);
|
|
err = cudnnFindConvolutionBackwardDataAlgorithm(*handle, dw, dz, conv, x, 1, &count, &algoGradIPerf);
|
|
if (err != 0 || count == 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnGetConvolutionBackwardDataAlgorithm failed", err);
|
|
algoGradI = algoGradIPerf.algo;
|
|
|
|
// allocate auxiliary device memory for gradW calculation, abbreviation ws means workspace
|
|
size_t wsGradWSize;
|
|
err = cudnnGetConvolutionBackwardFilterWorkspaceSize(*handle, x, dz, conv, dw, algoGradW, &wsGradWSize);
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnGetConvolutionBackwardFilterWorkspaceSize failed", err);
|
|
void* wsGradWData;
|
|
auto cudaErr = cudaMalloc(&wsGradWData, wsGradWSize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradWData failed", cudaErr);
|
|
|
|
// allocate auxiliary device memory for gradI calculation, abbreviation ws means workspace
|
|
size_t wsGradISize;
|
|
err = cudnnGetConvolutionBackwardDataWorkspaceSize(*handle, dw, dz, conv, dx, algoGradI, &wsGradISize);
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnGetConvolutionBackwardDataWorkspaceSize failed", err);
|
|
void* wsGradIData;
|
|
cudaErr = cudaMalloc(&wsGradIData, wsGradISize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradIData failed", cudaErr);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({gradI, gradW, gradB}, {input, weights, gradO});
|
|
|
|
// run calculation for gradB (if not nullptr)
|
|
if(gradB != nullptr) {
|
|
|
|
cudnnTensorDescriptor_t db;
|
|
cudnnCreateTensorDescriptor(&db);
|
|
err = cudnnSetTensorNdDescriptorEx(db, format, cudnnDataType(gradB->dataType()), numDims, dbShape.data());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnSetTensorNdDescriptor for gradB failed", err);
|
|
|
|
err = cudnnConvolutionBackwardBias(*handle, alpha, dz, gradO->specialBuffer(), beta, db, gradB->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnConvolutionBackwardBias failed", err);
|
|
}
|
|
|
|
// run calculation for gradW
|
|
err = cudnnConvolutionBackwardFilter(*handle, alpha, x, input->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradW, wsGradWData, wsGradWSize, beta, dw, gradW->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnConvolutionBackwardFilter failed", err);
|
|
|
|
// run calculation for gradI
|
|
err = cudnnConvolutionBackwardData(*handle, alpha, dw, weights->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradI, wsGradIData, wsGradISize, beta, dx, gradI->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudnnConvolutionBackwardData failed", err);
|
|
|
|
// cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
// if (cudaErr != 0)
|
|
// throw cuda_exception::build("conv3dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
cudaErr = cudaFree(wsGradWData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudaFree for auxiliary workspace memory wsGradWData failed", cudaErr);
|
|
cudaErr = cudaFree(wsGradIData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("conv3dBpCUDNN: cudaFree for auxiliary workspace memory wsGradIData failed", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({gradI, gradW, gradB}, {input, weights, gradO});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(conv3dnew, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "CONV3D CUDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CONV3D CUDNN OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
|
|
|
|
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
|
|
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
|
|
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
|
|
int sD = INT_ARG(3); // strides depth
|
|
int sH = INT_ARG(4); // strides height
|
|
int sW = INT_ARG(5); // strides width
|
|
int pD = INT_ARG(6); // paddings depth
|
|
int pH = INT_ARG(7); // paddings height
|
|
int pW = INT_ARG(8); // paddings width
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int paddingMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
|
|
int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC]
|
|
|
|
REQUIRE_TRUE(paddingMode < 2, 0, "CONV3D CUDNN OP: causal padding mode (paddingMode = 2) is not allowed for this operation !");
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC);
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CONV3D CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CONV3D CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
NDArray* newWeights = weights; // cudnn support only one format {oC,iC,kD,kH,kW}
|
|
if(1 != wFormat) {
|
|
newWeights = new NDArray(weights->ordering(), {oC, iC, kD, kH, kW}, weights->dataType(), weights->getContext());
|
|
newWeights->assign(weights->permute(0 == wFormat ? std::vector<int>({4,3,0,1,2}) : std::vector<int>({0,4,1,2,3}))); // kD, kH, kW, iC, oC --> oC, iC, kD, kH, kW or oC, kD, kH, kW, iC --> oC, iC, kD, kH, kW
|
|
}
|
|
|
|
NDArray* newInput = input;
|
|
NDArray* newGradI = nullptr;
|
|
if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings
|
|
checkConv3dCUDNNPadAsymmetric(newInput, newGradI, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isNCDHW);
|
|
|
|
conv3dCUDNN(block.launchContext(), newInput, newWeights, bias, output, kD,kH,kW,sD,sH,sW,pD,pH,pW,dD,dH,dW, paddingMode, isNCDHW, wFormat);
|
|
|
|
if(newInput != input)
|
|
delete newInput;
|
|
|
|
if(1 != wFormat)
|
|
delete newWeights;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(conv3dnew, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
int paddingMode = INT_ARG(12); // 0-SAME, 1-VALID
|
|
|
|
const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF;
|
|
const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF);
|
|
|
|
return paddingMode != 2 && !badInputType && !badWeightsType && !badBiasType;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(conv3dnew_bp, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC]
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC]
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "CONV3D_BP CUDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CONV3D_BP CUDNN OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CONV3D_BP CUDNN OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf());
|
|
|
|
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
|
|
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
|
|
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
|
|
int sD = INT_ARG(3); // strides depth
|
|
int sH = INT_ARG(4); // strides height
|
|
int sW = INT_ARG(5); // strides width
|
|
int pD = INT_ARG(6); // paddings depth
|
|
int pH = INT_ARG(7); // paddings height
|
|
int pW = INT_ARG(8); // paddings width
|
|
int dD = INT_ARG(9); // dilations depth
|
|
int dH = INT_ARG(10); // dilations height
|
|
int dW = INT_ARG(11); // dilations width
|
|
int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
|
|
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
|
|
int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC]
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
int trueoD, trueoH, trueoW; // true output depth/height/width
|
|
ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, paddingMode);
|
|
|
|
REQUIRE_TRUE(paddingMode < 2, 0, "CONV3D_BP CUDNN OP: causal padding mode (paddingMode = 2) is not allowed for this operation !");
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
|
|
std::vector<Nd4jLong> expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC);
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CONV3D_BP CUDNN OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(gradW->isSameShape(expectedWeightsShape), 0, "CONV3D_BP CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CONV3D_BP CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW, paddingMode);
|
|
|
|
NDArray *newWeights = weights, *newGradW = gradW; // cudnn support only two formats {oC,iC,kD,kH,kW} and {oC,kD,kH,kW,iC}
|
|
if(0 == wFormat) {
|
|
newGradW = new NDArray(gradW->ordering(), isNCDHW ? std::vector<Nd4jLong>({oC, iC, kD, kH, kW}) : std::vector<Nd4jLong>({oC, kD, kH, kW, iC}), gradW->dataType(), gradW->getContext());
|
|
newWeights = new NDArray(weights->ordering(), isNCDHW ? std::vector<Nd4jLong>({oC, iC, kD, kH, kW}) : std::vector<Nd4jLong>({oC, kD, kH, kW, iC}), weights->dataType(), weights->getContext());
|
|
newWeights->assign(weights->permute(isNCDHW ? std::vector<int>({4,3,0,1,2}) : std::vector<int>({4,0,1,2,3}))); // (kD, kH, kW, iC, oC --> oC, iC, kD, kH, kW) or (kD, kH, kW, iC, oC --> oC, kD, kH, kW, iC)
|
|
}
|
|
|
|
NDArray* newInput = input;
|
|
NDArray* newGradI = gradI;
|
|
if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings
|
|
checkConv3dCUDNNPadAsymmetric(newInput, newGradI, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isNCDHW);
|
|
|
|
conv3dBpCUDNN(block.launchContext(), newInput, newWeights, gradO, newGradI, newGradW, gradB, kD,kH,kW,sD,sH,sW,pD,pH,pW,dD,dH,dW,paddingMode,isNCDHW,wFormat);
|
|
|
|
if(0 == wFormat) {
|
|
newGradW->permutei(isNCDHW ? std::vector<int>({2,3,4,1,0}) : std::vector<int>({1,2,3,4,0})); // (oC, iC, kD, kH, kW --> kD, kH, kW, iC, oC) or (oC, kD, kH, kW, iC --> kD, kH, kW, iC, oC)
|
|
gradW->assign(newGradW);
|
|
}
|
|
|
|
|
|
if(newInput != input) {
|
|
|
|
if(isNCDHW)
|
|
gradI->assign((*newGradI)({0,0, 0,0, 0,gradI->sizeAt(2), 0,gradI->sizeAt(3), 0,gradI->sizeAt(4)}));
|
|
else
|
|
gradI->assign((*newGradI)({0,0, 0,gradI->sizeAt(1), 0,gradI->sizeAt(2), 0,gradI->sizeAt(3), 0,0}));
|
|
|
|
delete newInput;
|
|
delete newGradI;
|
|
}
|
|
|
|
if(0 == wFormat) {
|
|
delete newWeights;
|
|
delete newGradW;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(conv3dnew_bp, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC]
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
|
|
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
|
|
|
|
const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF;
|
|
const bool badGradOType = gradO->dataType() != DataType::DOUBLE && gradO->dataType() != DataType::FLOAT32 && gradO->dataType() != DataType::HALF;
|
|
const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF);
|
|
|
|
return isNCDHW && paddingMode != 2 && !badInputType && !badWeightsType && !badGradOType && !badBiasType;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|