cavis/libnd4j/include/ops/declarable/helpers/cuda/roll.cu

331 lines
14 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/roll.h>
#include <helpers/ConstantTadHelper.h>
#include <helpers/PointersManager.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
static void _CUDA_D rollKernelLinearStage1Dev(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift) {
auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto xEws = shape::elementWiseStride(xShapeInfo);
auto zEws = shape::elementWiseStride(zShapeInfo);
auto xOrder = shape::order(xShapeInfo);
auto zOrder = shape::order(zShapeInfo);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
if (xEws > 0 && zEws > 0 && xOrder == zOrder) {
for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) {
int sourceIndex = fullLength - actualShift + i;
auto eA = x[sourceIndex * xEws];
auto eB = x[i * xEws];
z[i * zEws] = eA;
z[sourceIndex * zEws] = eB;
}
} else {
for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) {
int sourceIndex = fullLength - actualShift + i;
auto xOffsetA = shape::getIndexOffset(i, xShapeInfo);
auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo);
auto zOffsetA = shape::getIndexOffset(i, zShapeInfo);
auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo);
auto eA = x[xOffsetA];
auto eB = x[xOffsetB];
z[zOffsetA] = eB;
z[zOffsetB] = eA;
}
}
}
template <typename T>
static void _CUDA_G rollKernelLinearStage1(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift) {
rollKernelLinearStage1Dev<T>(vx, xShapeInfo, vz, zShapeInfo, fullLength, actualShift);
}
template <typename T>
static void _CUDA_G rollKernelLinearStage2(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift, int shiftCount) {
auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto xEws = shape::elementWiseStride(xShapeInfo);
auto zEws = shape::elementWiseStride(zShapeInfo);
auto xOrder = shape::order(xShapeInfo);
auto zOrder = shape::order(zShapeInfo);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
if (xEws > 0 && zEws > 0 && xOrder == zOrder) {
for (int count = 1; count < shiftCount; ++count) {
for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) {
int destinationIndex = fullLength - (count + 1) * actualShift + i;
int sourceIndex = fullLength - count * actualShift + i;
auto eA = x[sourceIndex * xEws];
auto eB = x[destinationIndex * xEws];
z[destinationIndex * zEws] = eA;
z[sourceIndex * zEws] = eB;
}
__syncthreads();
}
} else {
for (int count = 1; count < shiftCount; ++count) {
for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) {
int destinationIndex = fullLength - (count + 1) * actualShift + i;
int sourceIndex = fullLength - count * actualShift + i;
auto xOffsetA = shape::getIndexOffset(destinationIndex, xShapeInfo);
auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo);
auto zOffsetA = shape::getIndexOffset(destinationIndex, zShapeInfo);
auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo);
auto eA = x[xOffsetA];
auto eB = x[xOffsetB];
z[zOffsetA] = eB;
z[zOffsetB] = eA;
}
__syncthreads();
}
}
}
template <typename T>
static void _CUDA_G rollKernelLinearStage3(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift, int remainShift) {
auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto xEws = shape::elementWiseStride(xShapeInfo);
auto zEws = shape::elementWiseStride(zShapeInfo);
auto xOrder = shape::order(xShapeInfo);
auto zOrder = shape::order(zShapeInfo);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
if (xEws > 0 && zEws > 0 && xOrder == zOrder) {
for (int i = tid ; i < actualShift; i += blockDim.x * gridDim.x) {
int remainIdx = i + actualShift;
int sourceIndex = remainIdx + remainShift;
auto eA = x[sourceIndex * xEws];
auto eB = x[remainIdx * xEws];
z[remainIdx * zEws] = eA;
z[sourceIndex * zEws] = eB;
}
} else {
for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) {
int remainIdx = i + actualShift;
int sourceIndex = remainIdx + remainShift;
auto xOffsetA = shape::getIndexOffset(remainIdx, xShapeInfo);
auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo);
auto zOffsetA = shape::getIndexOffset(remainIdx, zShapeInfo);
auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo);
auto eA = x[xOffsetA];
auto eB = x[xOffsetB];
z[zOffsetA] = eB;
z[zOffsetB] = eA;
}
}
}
template <typename T>
static void _CUDA_D swapTadsKernel(void *vx, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong tadLength) {
auto x = reinterpret_cast<T*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto zEws = shape::elementWiseStride(zShapeInfo);
auto zOrder = shape::order(zShapeInfo);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
if (zEws > 0) {
for (int e = threadIdx.x; e < tadLength; e += blockDim.x) {
auto eA = x[e * zEws];
auto eB = z[e * zEws];
x[e * zEws] = eB;
z[e * zEws] = eA;
}
} else {
for (int e = threadIdx.x; e < tadLength; e += blockDim.x) {
auto zOffset = shape::getIndexOffset(e, zShapeInfo);
auto eA = x[zOffset];
auto eB = z[zOffset];
x[zOffset] = eB;
z[zOffset] = eA;
}
}
}
template <typename T>
static void _CUDA_G rollKernelFullAnyDimensionStage1(const void *vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffsets, void *vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffsets, int numTads, Nd4jLong tadLength, int dim, Nd4jLong sizeAt, int theShift) {
auto x = reinterpret_cast<const T *>(vx);
auto z = reinterpret_cast<T *>(vz);
for (int e = blockIdx.x + theShift; e < sizeAt - theShift; e += gridDim.x) {
int sourceIndex = dim * sizeAt + e - theShift;
int targetIndex = dim * sizeAt + e;
swapTadsKernel<T>(z + xTadOffsets[sourceIndex], z + xTadOffsets[targetIndex], zTadShapeInfo, tadLength);
}
}
template <typename T>
static void _CUDA_G rollKernelFullAnyDimensionStage2(void *vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffsets, void *vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffsets, int numTads, Nd4jLong tadLength, int dim, Nd4jLong sizeAt, int theShift) {
auto x = reinterpret_cast<const T *>(vx);
auto z = reinterpret_cast<T *>(vz);
for (int e = blockIdx.x; e < theShift; e += gridDim.x) {
int sourceIndex = dim * sizeAt + sizeAt - theShift + e;
int targetIndex = dim * sizeAt + e;
swapTadsKernel<T>(z + zTadOffsets[sourceIndex], z + zTadOffsets[targetIndex], zTadShapeInfo, tadLength);
}
}
template <typename T>
static void rollFunctorFull_(NDArray* input, NDArray* output, std::vector<int> const& shifts, std::vector<int> const& axes, bool inplace){
if (!inplace)
output->assign(input);
for (size_t i = 0; i < axes.size(); i++) {
int axe = axes[i];
if (axe == input->rankOf() - 1) { // last dimension
ResultSet listOfTensors = output->allTensorsAlongDimension({axe});
ResultSet listOfOutTensors = output->allTensorsAlongDimension({axe});
int fullLen = listOfTensors.size();
int theShift = shifts[i];
// if (theShift > 0) {
// theShift %= fullLen;
// }
// else {
// theShift -= fullLen * (theShift / fullLen - 1);
// }
for (int k = 0; k < fullLen; k++) {
rollFunctorLinear(output->getContext(), listOfTensors.at(k), listOfOutTensors.at(k), theShift, true);
}
} else {
std::vector<int> dims(input->rankOf() - axe - 1);
for (int i = 0; i < dims.size(); ++i)
dims[i] = axe + 1 + i;
auto packZ = ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dims);
int numTads = packZ.numberOfTads();
int sizeAt = input->sizeAt(axe);
auto tadLength = shape::length(packZ.primaryShapeInfo());
int theShift = shifts[i];
// if (theShift > 0)
// theShift %= sizeAt;
// else
// theShift -= sizeAt * (theShift / sizeAt - 1);
if (theShift) {
for (int dim = 0; dim < numTads / sizeAt; ++dim) {
rollKernelFullAnyDimensionStage1<T><<<1, 256, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), numTads, tadLength, dim, sizeAt, theShift);
rollKernelFullAnyDimensionStage2<T><<<1, 256, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), numTads, tadLength, dim, sizeAt, theShift);
}
}
}
}
}
template <typename T>
static void rollFunctorLinear_(NDArray* input, NDArray* output, int shift, bool inplace){
if (!inplace)
output->assign(input);
auto fullLen = input->lengthOf();
int actualShift = shift; // % fullLen; // shift already non-negative then
if (actualShift < 0) {
actualShift -= fullLen * (actualShift / fullLen - 1);
}
else
actualShift %= fullLen;
if (actualShift) {
int shiftCount = fullLen / actualShift - 1;
int remainShift = fullLen % actualShift;
// stage 1) swap last actualShift elements with first ones.
rollKernelLinearStage1<T><<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift);
// stage 2) swap swapped actualShift elements with rest remainShiftCount times.
rollKernelLinearStage2<T><<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift, shiftCount);
// FIXME: no parallelism here :(
// stage 3) swap remainer of items.
if (remainShift && shiftCount)
rollKernelLinearStage3<T><<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift, remainShift);
}
}
void rollFunctorFull(sd::LaunchContext * context, NDArray* input, NDArray* output, std::vector<int> const& shifts, std::vector<int> const& axes, bool inplace){
input->syncToDevice();
BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorFull_, (input, output, shifts, axes, inplace), LIBND4J_TYPES);
output->tickWriteDevice();
}
void rollFunctorLinear(sd::LaunchContext * context, NDArray* input, NDArray* output, int shift, bool inplace){
input->syncToDevice();
BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorLinear_, (input, output, shift, inplace), LIBND4J_TYPES);
output->tickWriteDevice();
}
BUILD_SINGLE_TEMPLATE(template void rollFunctorLinear_, (NDArray* input, NDArray* output, int shift, bool inplace), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void rollFunctorFull_, (NDArray* input, NDArray* output, std::vector<int> const& shifts, std::vector<int> const& axes, bool inplace), LIBND4J_TYPES);
}
}
}