cavis/libnd4j/include/ops/declarable/helpers/cuda/adjust_saturation.cu

212 lines
9.2 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/adjust_saturation.h>
#include <ops/declarable/helpers/adjust_hue.h>
#include <helpers/ConstantTadHelper.h>
#include <helpers/PointersManager.h>
namespace sd {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template <typename T>
static void _CUDA_G adjustSaturationCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const T factor, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
T h, s, v;
rgbToHsv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], h, s, v);
s *= factor;
if(s > 1.f)
s = 1.f;
else if(s < 0.f)
s = 0.f;
hsvToRgb<T>(h, s, v, zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static _CUDA_H void adjustSaturationCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const NDArray* factorScalarArr, const int dimC) {
adjustSaturationCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, factorScalarArr->e<T>(0), dimC);
}
////////////////////////////////////////////////////////////////////////
void adjustSaturation(sd::LaunchContext* context, const NDArray *input, const NDArray* factorScalarArr, NDArray *output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), {dimC});
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "adjustSaturation");
NDArray::prepareSpecialUse({output}, {input, factorScalarArr});
BUILD_SINGLE_SELECTOR(input->dataType(), adjustSaturationCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, factorScalarArr, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input, factorScalarArr});
manager.synchronize();
}
/*
template <typename T>
static void _CUDA_G adjustSaturationSingleNHWCKernel(void *xBuffer, Nd4jLong *xShapeInfo, void *zBuffer, Nd4jLong *zShapeInfo, Nd4jLong tuples, float delta) {
int numChannels = 3;
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
auto bIn = reinterpret_cast<T*>(xBuffer);
auto bOut = reinterpret_cast<T*>(zBuffer);
static const int kChannelRange = 6;
for (Nd4jLong e = tid; e < tuples; e += blockDim.x * gridDim.x) {
auto i = bIn + e * numChannels;
auto o = bOut + e * numChannels;
T h, s, v;
// Convert the RGB color to Hue/V-range.
helpers::rgb_to_hsv(i[0], i[1], i[2], &h, &s, &v);
s = sd::math::nd4j_min<T>((T) 1.0f, sd::math::nd4j_max<T>((T) 0.0f, s * delta));
// Convert the hue and v-range back into RGB.
helpers::hsv_to_rgb(h, s, v, o, o + 1, o + 2);
}
}
template <typename T>
static void _CUDA_G adjustSaturationSingleNCHWKernel(void *xBuffer, Nd4jLong *xTadShapeInfo, Nd4jLong *xOffsets, void *zBuffer, Nd4jLong *zTadShapeInfo, Nd4jLong *zOffsets, Nd4jLong tadLength, Nd4jLong tuples, float delta) {
int numChannels = 3;
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
static const int kChannelRange = 6;
auto bufferR = reinterpret_cast<T *>(xBuffer) + xOffsets[0];
auto bufferG = reinterpret_cast<T *>(xBuffer) + xOffsets[1];
auto bufferB = reinterpret_cast<T *>(xBuffer) + xOffsets[2];
auto outputR = reinterpret_cast<T *>(zBuffer) + zOffsets[0];
auto outputG = reinterpret_cast<T *>(zBuffer) + zOffsets[1];
auto outputB = reinterpret_cast<T *>(zBuffer) + zOffsets[2];
for (Nd4jLong e = tid; e < tuples; e += blockDim.x * gridDim.x) {
auto _ri = bufferR + shape::getIndexOffset(e, xTadShapeInfo);
auto _gi = bufferG + shape::getIndexOffset(e, xTadShapeInfo);
auto _bi = bufferB + shape::getIndexOffset(e, xTadShapeInfo);
auto _ro = outputR + shape::getIndexOffset(e, xTadShapeInfo);
auto _go = outputG + shape::getIndexOffset(e, xTadShapeInfo);
auto _bo = outputB + shape::getIndexOffset(e, xTadShapeInfo);
T h, s, v;
// Convert the RGB color to Hue/V-range.
helpers::rgb_to_hsv(_ri[0], _gi[0], _bi[0], &h, &s, &v);
s = sd::math::nd4j_min<T>((T) 1.0f, sd::math::nd4j_max<T>((T) 0.0f, s * delta));
// Convert the hue and v-range back into RGB.
helpers::hsv_to_rgb(h, s, v, _ro, _go, _bo);
}
}
template <typename T>
static void _adjust_saturation_single(sd::LaunchContext * context, NDArray *array, NDArray *output, float delta, bool isNHWC) {
// numChannels is always 3
auto tuples = array->lengthOf() / 3;
if (isNHWC) {
adjustSaturationSingleNHWCKernel<T><<<256, 256, 1024, *context->getCudaStream()>>>(array->specialBuffer(), array->specialShapeInfo(), output->specialBuffer(), output->special(), tuples, delta);
} else {
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(array->shapeInfo(), {1, 2});
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), {1, 2});
auto tadLength = shape::length(packX.primaryShapeInfo());
adjustSaturationSingleNCHWKernel<T><<<256, 256, 1024, *context->getCudaStream()>>>(array->specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), tadLength, tuples, delta);
}
}
template <typename T>
static void _adjust_saturation_batch(sd::LaunchContext * context, NDArray *array, NDArray *output, float delta, bool isNHWC) {
auto xType = array->dataType();
// numChannels is always 3
auto tuples = array->lengthOf() / 3;
if (isNHWC) {
// in case of nhwc batch, we don't really care about examples: it's still bunch of RGB values
BUILD_SINGLE_SELECTOR(xType, _adjust_saturation_single, (context, array, output, delta, isNHWC);, FLOAT_TYPES);
} else {
// TODO: check this one
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(array->shapeInfo(), {0, 2, 3});
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), {0, 2, 3});
auto tadLength = shape::length(packX.primary());
adjustSaturationSingleNCHWKernel<T><<<256, 256, 1024, *context->getCudaStream()>>>(array->specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), packZ.platform(), packZ.platform(), tadLength, tuples, delta);
}
}
void adjust_saturation(sd::LaunchContext * context, NDArray *array, NDArray *output, NDArray* delta, bool isNHWC) {
auto xType = array->dataType();
float d = delta->e<float>(0);
if (array->rankOf() == 4) {
BUILD_SINGLE_SELECTOR(xType, _adjust_saturation_batch, (context, array, output, d, isNHWC);, FLOAT_TYPES);
} else {
BUILD_SINGLE_SELECTOR(xType, _adjust_saturation_single, (context, array, output, d, isNHWC);, FLOAT_TYPES);
}
}
*/
}
}
}