* RL4J: Add generic update rule (#502) Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com> * Shyrma reduce (#481) * - start working on improving of cpu legacy code for reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further work on improving legacy loops Signed-off-by: Yurii <iuriish@yahoo.com> * - still working on improving reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further work on improving reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - testing speed run of new reduce op Signed-off-by: Yurii <iuriish@yahoo.com> * - working on improvement of default loop for reduce op Signed-off-by: Yurii <iuriish@yahoo.com> * - update signatures of stuff which calls reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections in cuda reduce kernels Signed-off-by: Yurii <iuriish@yahoo.com> * - change loop for default case in broadcast legacy ops Signed-off-by: Yurii <iuriish@yahoo.com> * - comment some shape stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - comment unnecessary prints in RNGtests Signed-off-by: Yurii <iuriish@yahoo.com> * - finish to resolve conflicts after master has been merged Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of some compilation mistakes of cuda stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - minor changes Signed-off-by: Yurii <iuriish@yahoo.com> * - further search for bug causing crash on java test Signed-off-by: Yurii <iuriish@yahoo.com> * - add scalar case in reduce_ ... exec stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - minor corrections in NAtiveOps.cu Signed-off-by: Yurii <iuriish@yahoo.com> * - add switch to scalar case execReduceXD functions Signed-off-by: Yurii <iuriish@yahoo.com> * - add support for vectors old shape in ConstantShapeHelper::createShapeInfoWithNoUnitiesForReduce Signed-off-by: Yurii <iuriish@yahoo.com> * - correct cuda mirrorPad Signed-off-by: Yurii <iuriish@yahoo.com> * - add support for vectors old shape in cuda createShapeInfoWithNoUnitiesForReduce Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com> * Add support for CUDA 11.0 (#492) * Add support for CUDA 11.0 * libnd4j tweaks for CUDA 11 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * bindings update, again? Signed-off-by: raver119@gmail.com <raver119@gmail.com> * * Update versions of JavaCPP Presets for FFmpeg, OpenBLAS, and NumPy * update API to match CUDA 8 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * * Update version of JavaCPP Presets for CPython * C++ updated for cuDNN 8.0 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * 128-bit alignment for workspaces Signed-off-by: raver119@gmail.com <raver119@gmail.com> * change seed in 1 test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fix dependecy duplication in python4j-parent pom * Fix group id for in python4j-numpy * few tests tweaked Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Remove macosx-x86_64-gpu from nd4j-tests-tensorflow * few minor tweaks for IndexReduce Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one test removed Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com> * RL4J: Add SyncTrainer and AgentLearnerBuilder for a few algorithms (#504) Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com> Co-authored-by: Alexandre Boulanger <44292157+aboulang2002@users.noreply.github.com> Co-authored-by: Yurii Shyrma <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com> Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>
		
			
				
	
	
		
			398 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			398 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*******************************************************************************
 | |
|  * Copyright (c) 2015-2018 Skymind, Inc.
 | |
|  *
 | |
|  * This program and the accompanying materials are made available under the
 | |
|  * terms of the Apache License, Version 2.0 which is available at
 | |
|  * https://www.apache.org/licenses/LICENSE-2.0.
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | |
|  * License for the specific language governing permissions and limitations
 | |
|  * under the License.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  ******************************************************************************/
 | |
| 
 | |
| //
 | |
| // @author Yurii Shyrma (iuriish@yahoo.com), created on 25.11.2017.
 | |
| //
 | |
| 
 | |
| #include <system/op_boilerplate.h>
 | |
| #if NOT_EXCLUDED(OP_softmax_cross_entropy_loss)
 | |
| 
 | |
| #include <ops/declarable/CustomOperations.h>
 | |
| 
 | |
| namespace sd {
 | |
| namespace ops  {
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| CUSTOM_OP_IMPL(softmax_cross_entropy_loss, 3, 1, false, 1, 1) {
 | |
| 
 | |
|   	auto logits  = INPUT_VARIABLE(0);
 | |
|     auto weights = INPUT_VARIABLE(1);
 | |
|     auto labels  = INPUT_VARIABLE(2);
 | |
|     auto output  = OUTPUT_VARIABLE(0);
 | |
| 
 | |
|     int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
 | |
|     double labelsSmoothing = T_ARG(0);
 | |
| 
 | |
|     // input validation
 | |
|     REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
 | |
| 	// only 4 possible reduction modes exist
 | |
|     REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
 | |
| 	// smoothing is possible for rank of logits/labels > 1
 | |
|     REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: smoothing is not possible when rank of labels/ logits = 1 !");
 | |
| 
 | |
|     if(!output->isScalar()) {
 | |
|     	// weights array can be single scalar or has the same shape as output, and must be broadcastable to output shape
 | |
|     	REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == output->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", weights->rankOf(), output->rankOf());
 | |
|     	// check whether broadcast operation is possible for weights array
 | |
| 	    REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *output), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
 | |
|     }
 | |
| 
 | |
| 	// If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
 | |
| 	// num_classes = labels->sizeAt(1)
 | |
| 	NDArray* cLabels = new NDArray(labels->cast(weights->dataType()));
 | |
| 	NDArray* newLabels = cLabels;
 | |
| 	if(labelsSmoothing != 0.) {
 | |
| 		newLabels = new NDArray(cLabels);
 | |
|     	newLabels->assign((1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1));
 | |
| 	}
 | |
| 
 | |
| 	// main formula: result = - sum_i(lables_i * log(softmax_i)) - sum over last dimension
 | |
| 	// softmax_i = exp(logits_i) / sum_j(exp(logits_j))
 | |
| 	// so result = sum_i( lables_i * (log(sum_j(exp(logits_j))) - logits_i) )
 | |
| 	// for numerical stability we use shifted logits (one can approve this using simple math):
 | |
| 	// softmax_i = exp(logits_i - maxLogit) / sum_j(exp(logits_j - maxLogit))
 | |
| 	// maxLogit is max among logits_i
 | |
| 
 | |
| 
 | |
| 	std::vector<int> dimensions = {-1};
 | |
| 	NDArray shiftedLogits = *logits - logits->reduceAlongDimension(reduce::Max, dimensions, true);
 | |
| 	NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDimension(reduce::Sum, dimensions, true).transform(transform::Log);
 | |
| 	NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDimension(reduce::Sum, dimensions);
 | |
| 
 | |
| 	// perform weights broadcasting/tile to E if it is necessary
 | |
| 	auto weightsBroad = weights;
 | |
| 	if(!weights->isScalar() && !weights->isSameShape(&E)) {
 | |
| 		if(E.rankOf() == 1 && weights->isVector() && weights->rankOf() > 1)
 | |
|     		weightsBroad = new NDArray(weights->reshape(weights->ordering(), {weights->lengthOf()}));
 | |
|     	else
 | |
| 			weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo()));
 | |
| 	}
 | |
| 
 | |
|     // multiply E on weights
 | |
|     E *= *weightsBroad;
 | |
| 
 | |
| 	switch (reductionMode) {
 | |
| 		case 0:												// 0 - "none", un-reduced weighted losses with the same shape as labels.
 | |
| 			output->assign(&E);
 | |
| 			break;
 | |
| 
 | |
| 		case 1: {											// 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
 | |
| 			E.reduceNumber(reduce::Sum, *output);
 | |
| 			break;
 | |
| 		}
 | |
| 		case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
 | |
| 			double sum;
 | |
| 			if (weights->isScalar())
 | |
| 				sum = weights->e<double>(0) * E.lengthOf();
 | |
| 			else
 | |
| 				sum = weightsBroad->reduceNumber(reduce::Sum).e<double>(0);
 | |
| 
 | |
| 			if (sum == 0.)
 | |
| 				*output = 0.;
 | |
| 			else
 | |
| 				output->assign(E.reduceNumber(reduce::Sum) / sum);
 | |
| 			break;
 | |
| 		}
 | |
| 		case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
 | |
| 			Nd4jLong numOfNonZeroWeights = 0;
 | |
| 			if(weights->isScalar()) {
 | |
| 				if(weights->e<double>(0) != 0.)
 | |
| 					numOfNonZeroWeights = E.lengthOf();
 | |
| 			}
 | |
| 			else {
 | |
| 				numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
 | |
| 			}
 | |
| 
 | |
| 			if (numOfNonZeroWeights == 0)
 | |
| 				*output = 0.;
 | |
| 			else
 | |
| 				output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     if(weightsBroad != weights)
 | |
|     	delete weightsBroad;
 | |
| 
 | |
|     if(newLabels != cLabels)
 | |
|     	delete newLabels;
 | |
| 
 | |
| 	delete cLabels;
 | |
| 
 | |
|     return Status::OK();
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| DECLARE_TYPES(softmax_cross_entropy_loss) {
 | |
| 
 | |
| 	getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS})
 | |
| 					->setAllowedInputTypes(1, {ALL_FLOATS})
 | |
| 					->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS})
 | |
| 					->setAllowedOutputTypes({ALL_FLOATS});
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| DECLARE_SHAPE_FN(softmax_cross_entropy_loss) {
 | |
| 
 | |
| 	auto logitsShapeInfo  = inputShape->at(0);
 | |
| 	auto weightsShapeInfo = inputShape->at(1);
 | |
|     auto labelsShapeInfo  = inputShape->at(2);
 | |
| 
 | |
| 	// labels and logits must have the same shapes
 | |
|     REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
 | |
| 
 | |
| 	DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
 | |
| 	Nd4jLong const* outShapeInfo = nullptr;
 | |
| 
 | |
|     if(INT_ARG(0) != 0) 			// in this case output is scalar
 | |
|     	outShapeInfo = ConstantShapeHelper::getInstance().scalarShapeInfo(outType);
 | |
|     else { 							// in this case output has the shape as labels and logits minus last dimension
 | |
|     	std::vector<int> dimensions = {-1};
 | |
|     	outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, true, block.getWorkspace());
 | |
| 
 | |
| 		// weights array can be single scalar or has the same rank as output, and must be broadcastable to output
 | |
|     	REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(outShapeInfo));
 | |
|     	// check whether broadcast operation is possible for weights array
 | |
| 	    REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(outShapeInfo).c_str());
 | |
|     }
 | |
| 
 | |
|     return SHAPELIST(outShapeInfo);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| CUSTOM_OP_IMPL(softmax_cross_entropy_loss_grad, 3, 3, false, 1, 1) {
 | |
| 
 | |
| 	auto logits  = INPUT_VARIABLE(0);
 | |
|     auto weights = INPUT_VARIABLE(1);
 | |
|     auto labels  = INPUT_VARIABLE(2);
 | |
| 
 | |
|     auto dLdp = OUTPUT_VARIABLE(0);		// dL/dlogits
 | |
|     auto dLdw = OUTPUT_VARIABLE(1);		// dL/dweights
 | |
|     auto dLdl = OUTPUT_VARIABLE(2);		// dL/dlabels
 | |
| 
 | |
|     auto labelsSmoothing = T_ARG(0);
 | |
| 
 | |
|     int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
 | |
|     // take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
 | |
|     if(reductionMode == 0)
 | |
|     	reductionMode = 1;
 | |
| 
 | |
|     std::vector<int> dimensions = {-1};
 | |
| 
 | |
|     // input validation
 | |
|     REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str());
 | |
| 	// only 4 possible reduction modes exist
 | |
|     REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
 | |
|    	auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(logits->ordering(), dimensions, logits->shapeInfo(), false, false, block.getWorkspace());
 | |
|    	// weights array can be single scalar or has the same shape as loss, and must be broadcastable to loss shape
 | |
|    	REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", weights->rankOf(), shape::rank(lossShapeInfo));
 | |
|    	// check whether broadcast operation is possible for weights array
 | |
|     REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(weights->shapeInfo(), lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
 | |
|     // smoothing is possible for rank of logits/labels > 1
 | |
|     REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: smoothing is not possible when rank of labels/ logits = 1 !");
 | |
| 
 | |
| 	// If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
 | |
| 	// num_classes = labels->sizeAt(1)
 | |
| 	NDArray* cLabels = new NDArray(labels->cast(weights->dataType()));
 | |
| 	NDArray* newLabels = cLabels;
 | |
| 	if(labelsSmoothing != 0.) {
 | |
| 		newLabels = new NDArray(labels->shapeInfo(), dLdl->dataType(), false, block.launchContext());
 | |
|     	newLabels->assign((1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1));
 | |
| 	}
 | |
| 
 | |
| 	NDArray softmax = (*logits - logits->reduceAlongDimension(reduce::Max, dimensions, true)).transform(transform::Exp);
 | |
| 	softmax /= softmax.reduceAlongDimension(reduce::Sum, dimensions, true);
 | |
| 
 | |
| 	// dEdp = softmax * sum_i(lables_i) - labels
 | |
| 	dLdp->assign(softmax * newLabels->reduceAlongDimension(reduce::Sum, dimensions, true) - *newLabels);
 | |
| 
 | |
| 	// dEdl = -log(softmax)
 | |
| 	dLdl->assign(-softmax.transform(transform::Log)* (1.f - labelsSmoothing));
 | |
| 
 | |
| 	NDArray shiftedLogits = *logits - logits->reduceAlongDimension(reduce::Max, dimensions, true);
 | |
|     NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDimension(reduce::Sum, dimensions, true).transform(transform::Log);
 | |
|     NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDimension(reduce::Sum, dimensions);
 | |
| 
 | |
| 	// perform weights broadcasting/tile to E if it is necessary
 | |
| 	auto weightsBroad = weights;
 | |
| 	if(!weights->isScalar() && !weights->isSameShape(&E))
 | |
| 			weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo()));
 | |
| 
 | |
| 	dimensions = ShapeUtils::evalDimsToExclude(dLdp->rankOf(), dimensions);
 | |
| 
 | |
| 	switch (reductionMode) {
 | |
| 		case 1: {											// 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array
 | |
| 
 | |
| 			if(weights->isScalar() || weights->lengthOf() == 1) {
 | |
| 				dLdw->assign(E.reduceNumber(reduce::Sum));
 | |
| 				*dLdp *= *weights;
 | |
| 				*dLdl *= *weights;
 | |
| 			}
 | |
| 			else {
 | |
| 				dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, *weightsBroad, *dLdp);
 | |
| 				dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, *weightsBroad, *dLdl);
 | |
| 
 | |
| 				if(weights != weightsBroad) {
 | |
| 					std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
 | |
| 					E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
 | |
| 				}
 | |
| 				else
 | |
| 					dLdw->assign(E);
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
 | |
| 			NDArray sum;
 | |
| 			if (weights->isScalar())
 | |
| 				sum = (*weights) * E.lengthOf();
 | |
| 			else
 | |
| 				sum = weightsBroad->reduceNumber(reduce::Sum);
 | |
| 
 | |
| 			if (sum.e<double>(0) == 0.) {
 | |
| 				*dLdp = 0.;
 | |
| 				*dLdl = 0.;
 | |
| 				*dLdw = 0.;
 | |
| 			}
 | |
| 			else {
 | |
| 
 | |
| 				if(weights->isScalar() || weights->lengthOf() == 1) {
 | |
| 					NDArray temp = *weights / sum;
 | |
| 					*dLdp *= temp;
 | |
| 					*dLdl *= temp;
 | |
| 					*dLdw = 0.;
 | |
| 				}
 | |
| 				else {
 | |
| 
 | |
| 					NDArray temp = *weightsBroad / sum;
 | |
| 					dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdp);
 | |
| 					dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdl);
 | |
| 
 | |
| 					if(weights != weightsBroad) {
 | |
| 						std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
 | |
| 						((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
 | |
| 					}
 | |
| 					else
 | |
| 						dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum));
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
 | |
| 			Nd4jLong numOfNonZeroWeights = 0;
 | |
| 			if(weights->isScalar()) {
 | |
| 				if(weights->e<double>(0) != 0.)
 | |
| 					numOfNonZeroWeights = E.lengthOf();
 | |
| 			}
 | |
| 			else
 | |
| 				numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
 | |
| 
 | |
| 			if (numOfNonZeroWeights == 0) {
 | |
| 				*dLdp = 0.;
 | |
| 				*dLdl = 0.;
 | |
| 				*dLdw = 0.;
 | |
| 			}
 | |
| 			else {
 | |
| 
 | |
| 				if(weights->isScalar() || weights->lengthOf() == 1) {
 | |
| 					NDArray temp = *weights / numOfNonZeroWeights;
 | |
| 					*dLdp *= temp;
 | |
| 					*dLdl *= temp;
 | |
| 					dLdw->assign(E.reduceNumber(reduce::Sum) / numOfNonZeroWeights);
 | |
| 				}
 | |
| 				else {
 | |
| 					NDArray temp = *weightsBroad / numOfNonZeroWeights;
 | |
| 					dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdp);
 | |
| 					dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdl);
 | |
| 
 | |
| 					if(weights != weightsBroad) {
 | |
| 						std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo());
 | |
| 						E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true);
 | |
| 						*dLdw /= numOfNonZeroWeights;
 | |
| 					}
 | |
| 					else
 | |
| 						dLdw->assign(E / numOfNonZeroWeights);
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     if(weightsBroad != weights)
 | |
|     	delete weightsBroad;
 | |
| 
 | |
|     if(newLabels != cLabels)
 | |
|     	delete newLabels;
 | |
| 
 | |
|     delete cLabels;
 | |
| 
 | |
|     return Status::OK();
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| DECLARE_TYPES(softmax_cross_entropy_loss_grad) {
 | |
| 
 | |
| 	getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS})
 | |
| 					 ->setAllowedInputTypes(1, {ALL_FLOATS})
 | |
| 					 ->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS})
 | |
| 					 ->setAllowedInputTypes(3, {ALL_FLOATS})
 | |
| 					 ->setAllowedInputTypes(4, {ALL_FLOATS})
 | |
| 					 ->setAllowedInputTypes(5, {ALL_FLOATS})
 | |
| 					 ->setAllowedOutputTypes({ALL_FLOATS});
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| DECLARE_SHAPE_FN(softmax_cross_entropy_loss_grad) {
 | |
| 
 | |
| 	auto logitsShapeInfo  = inputShape->at(0);
 | |
| 	auto weightsShapeInfo = inputShape->at(1);
 | |
|     auto labelsShapeInfo  = inputShape->at(2);
 | |
| 
 | |
|     std::vector<int> dimensions = {-1};
 | |
| 
 | |
| 	// labels and logits must have the same shapes
 | |
|     REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str());
 | |
| 	auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, false, block.getWorkspace());
 | |
| 	// weights array can be single scalar or has the same rank as loss, and must be broadcastable to loss
 | |
|     REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(lossShapeInfo));
 | |
|     // check whether broadcast operation is possible for weights array
 | |
| 	REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str());
 | |
| 
 | |
|     auto outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo));
 | |
| 
 | |
|     auto dLdpShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(logitsShapeInfo), shape::shapeOf(logitsShapeInfo), shape::rank(logitsShapeInfo)));
 | |
|     auto dLdwShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(weightsShapeInfo), shape::shapeOf(weightsShapeInfo), shape::rank(weightsShapeInfo)));
 | |
|     auto dLdlShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo), shape::rank(labelsShapeInfo)));
 | |
| 
 | |
|     return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo);
 | |
| }
 | |
| 
 | |
| 
 | |
| }
 | |
| }
 | |
| 
 | |
| #endif |