Go to file
Alex Black 9cc8803b8d
DL4J + Keras import: Causal Conv1D support (#107)
* Keras causal conv1d support first steps

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Add tests

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Causal conv mode

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Gradient check and fixes for causal conv1d

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix Conv1D import and testing

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small keras test fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* Don't allow setting causal convolution mode to conv2d/3d layers

Signed-off-by: Alex Black <blacka101@gmail.com>

* More robustly infer nIn for recurrent layers for ambiguous NCW and NWC cases

Signed-off-by: Alex Black <blacka101@gmail.com>

* Polish and cleanup

Signed-off-by: Alex Black <blacka101@gmail.com>
2019-12-04 22:52:06 +11:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
datavec Python updates (#86) 2019-12-02 19:20:23 +11:00
deeplearning4j DL4J + Keras import: Causal Conv1D support (#107) 2019-12-04 22:52:06 +11:00
docs Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
gym-java-client RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j DNNL/MKLDNN dilated causal conv1d + betainc (#103) 2019-12-04 14:50:17 +03:00
nd4j TF Updates (#87) 2019-12-04 17:11:03 +11:00
nd4s Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
pydatavec fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
pydl4j Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
rl4j Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Python updates (#86) 2019-12-02 19:20:23 +11:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials