2019-06-06 15:21:15 +03:00

63 lines
2.5 KiB
Java

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.datasets.iterator;
import org.deeplearning4j.BaseDL4JTest;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor;
import org.nd4j.linalg.dataset.api.preprocessor.MultiNormalizerMinMaxScaler;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
/**
* Created by susaneraly on 6/17/17.
*/
public class CombinedPreProcessorTests extends BaseDL4JTest {
@Test
public void somePreProcessorsCombined() {
INDArray[] featureArr = new INDArray[] {Nd4j.linspace(100, 200, 20).reshape(10, 2)};
org.nd4j.linalg.dataset.MultiDataSet multiDataSet =
new org.nd4j.linalg.dataset.MultiDataSet(featureArr, null, null, null);
MultiNormalizerMinMaxScaler minMaxScaler = new MultiNormalizerMinMaxScaler();
minMaxScaler.fit(multiDataSet);
CombinedMultiDataSetPreProcessor multiDataSetPreProcessor = new CombinedMultiDataSetPreProcessor.Builder()
.addPreProcessor(minMaxScaler).addPreProcessor(1, new addFivePreProcessor()).build();
multiDataSetPreProcessor.preProcess(multiDataSet);
assertEquals(Nd4j.zeros(10, 2).addColumnVector(Nd4j.linspace(0, 1, 10).reshape(10, 1)).addi(5),
multiDataSet.getFeatures(0));
}
/*
Adds five to the features - assumes multidataset here is one feature and one label
*/
public final class addFivePreProcessor implements MultiDataSetPreProcessor {
@Override
public void preProcess(MultiDataSet multiDataSet) {
multiDataSet.getFeatures(0).addi(5);
}
}
}