Yurii Shyrma 5d9b2a16e5 Shyrma temp (#131)
* - specifying template instantiation for certain types in float16 and bloat16

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing bfloat16 and float16 member functions template specialization

Signed-off-by: Yurii <iuriish@yahoo.com>

* - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - make corrections which have to do with and rvalue lvalue conversions

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide move semantic in NDArray operators array +-/* array

Signed-off-by: Yurii <iuriish@yahoo.com>

* float16/bfloat16 tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* - make float16 and bfloat16 to compile successfully on cuda

Signed-off-by: Yurii <iuriish@yahoo.com>

* - do not use resources of view-like arrays when move semantics is applied

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of pointers in signatures NDArray methods 1

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correction of signature of NDArray::dup method

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correction of signature of NDArray::reduceAlongDimension method

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::tensorsAlongDimension and diagonal methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::allTensorsAlongDimension

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::reduceAlongDimension 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyTransform 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyPairwiseTransform 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyBroadcast 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyTrueBroadcast 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::applyScalar and applyScalarArr

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::lambda methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::reduce3 methods 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::tileToShape methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - signature correction of NDArray::isShapeSameStrict method

Signed-off-by: Yurii <iuriish@yahoo.com>

* minor corrections in tests

Signed-off-by: Yurii <iuriish@yahoo.com>

* - replace reduce op in batchnorm mkldnn

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add explicit templates instantiations for operator+(NDArray&&. const scalar)

Signed-off-by: Yurii <iuriish@yahoo.com>

* - corrections of casts in float16/bfloat16

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of input array A duplicate in svd cuda op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - avoid available bug in svd cuda API

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add temporary global memory buffer in svd cuda when calcUV = false and  m != n

Signed-off-by: Yurii <iuriish@yahoo.com>

* - remove test with blfoat16 type for betainC

Signed-off-by: Yurii <iuriish@yahoo.com>

* - resolve conflicts after master has been merged in

Signed-off-by: Yurii <iuriish@yahoo.com>

* - changed type of affected input array in fused_batch_norm

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add several explicit type castings

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add ND4J_EXPORT to operators

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add explicit template types in instantiations of template arithm operators of NDArray class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - one more test fix

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 22:35:39 +03:00

161 lines
5.8 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 01.06.2018
//
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/axis.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(reduce_mean, 1, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
auto dimensions = *block.getIArguments();
if (block.width() > 1) {
auto axesVector = INPUT_VARIABLE(1);
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
}
bool keepDims = false;
if (block.getBArguments()->size())
keepDims = B_ARG(0);
else if (block.getTArguments()->size())
keepDims = (bool)T_ARG(0);
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
for(const auto& item : dimensions)
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
input->reduceAlongDimension(reduce::Mean, *output, dimensions, keepDims);
return Status::OK();
}
DECLARE_SHAPE_FN(reduce_mean) {
auto dimensions = *block.getIArguments();
auto in = inputShape->at(0);
if (block.width() > 1) {
auto axesVector = INPUT_VARIABLE(1);
helpers::adjustAxis(shape::rank(in), axesVector, dimensions);
}
bool keepDims = false;
if (block.getBArguments()->size())
keepDims = B_ARG(0);
else if (block.getTArguments()->size())
keepDims = (bool)T_ARG(0);
REQUIRE_TRUE(dimensions.size() <= in[0], 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
for(const auto& item : dimensions)
REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item);
auto outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(in), dimensions, in, keepDims, false, block.getWorkspace());
return SHAPELIST(outShapeInfo);
}
DECLARE_TYPES(reduce_mean) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(reduce_mean_bp, 2, 1, false, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto gradO = INPUT_VARIABLE(1);
auto gradI = OUTPUT_VARIABLE(0);
auto dimensions = *block.getIArguments();
if (block.width() > 2) {
auto axesVector = INPUT_VARIABLE(2);
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
}
bool keepDims = false;
if (block.getBArguments()->size())
keepDims = B_ARG(0);
else if (block.getTArguments()->size())
keepDims = (bool)T_ARG(0);
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
for(const auto& item : dimensions)
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
if(gradO->lengthOf() == 1) {
gradI->assign(gradO->e(0) / input->lengthOf());
}
else {
gradI->assign((gradO->lengthOf() + 0.) / input->lengthOf());
if(!keepDims) {
auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace());
*gradI *= gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims)); // for example could be something like [a,b] -> [1,a,1,b]
}
else
*gradI *= *gradO;
}
return Status::OK();
}
DECLARE_SHAPE_FN(reduce_mean_bp) {
auto in = inputShape->at(0);
auto dimensions = *block.getIArguments();
auto rank = shape::rank(in);
if (block.width() > 2) {
auto axesVector = INPUT_VARIABLE(2);
helpers::adjustAxis(rank, axesVector, dimensions);
}
REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
for(const auto& item : dimensions)
REQUIRE_TRUE(item >= -rank || item < rank, 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , rank, rank, item);
Nd4jLong* gradIshapeInfo(nullptr);
COPY_SHAPE(inputShape->at(0), gradIshapeInfo);
return SHAPELIST(CONSTANT(gradIshapeInfo));
}
DECLARE_TYPES(reduce_mean_bp) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
}
}