1036 lines
45 KiB
Plaintext
1036 lines
45 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <cublas_v2.h>
|
|
#include "../MmulHelper.h"
|
|
#include <specials_cuda.h>
|
|
#include <ShapeUtils.h>
|
|
#include <PointersManager.h>
|
|
#include <numeric>
|
|
|
|
namespace nd4j {
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// MXK x KxN = MxN -> actual sequence of axes doesn't matter
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void usualCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo,
|
|
const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis,
|
|
const double alpha, const double beta) {
|
|
|
|
const T1* A = reinterpret_cast<const T1*>(vA);
|
|
const T2* B = reinterpret_cast<const T2*>(vB);
|
|
T3* C = reinterpret_cast< T3*>(vC);
|
|
|
|
__shared__ int K;
|
|
__shared__ bool betaPresent;
|
|
__shared__ Nd4jLong cLen, totalThreads, *coords;
|
|
__shared__ T3 alphaZ, betaZ;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
coords = reinterpret_cast<Nd4jLong*>(shmem);
|
|
cLen = shape::length(cShapeInfo);
|
|
|
|
K = shape::shapeOf(const_cast<Nd4jLong*>(aShapeInfo))[aKaxis];
|
|
|
|
betaPresent = beta;
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
|
|
alphaZ = alpha;
|
|
betaZ = beta;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto aCoords = coords + threadIdx.x * 6; // 6 = (aRank + bRank + cRank)
|
|
auto bCoords = aCoords + 2;
|
|
auto cCoords = bCoords + 2;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < cLen; i += totalThreads) {
|
|
|
|
// evaluate C coordinates
|
|
shape::index2coords(i, cShapeInfo, cCoords);
|
|
|
|
// evaluate A coordinates
|
|
aCoords[aMaxis] = cCoords[cMaxis];
|
|
aCoords[aKaxis] = 0;
|
|
|
|
// evaluate B coordinates
|
|
bCoords[bKaxis] = 0;
|
|
bCoords[bNaxis] = cCoords[cNaxis];
|
|
|
|
auto aOffset = shape::getOffset(aShapeInfo, aCoords);
|
|
auto bOffset = shape::getOffset(bShapeInfo, bCoords);
|
|
|
|
T3 val = A[aOffset] * B[bOffset]; // first iteration
|
|
|
|
for (uint j = 1; j < K; ++j) { // rest iterations
|
|
aOffset += shape::stride(aShapeInfo)[aKaxis];
|
|
bOffset += shape::stride(bShapeInfo)[bKaxis];
|
|
val = val + A[aOffset] * B[bOffset];
|
|
}
|
|
|
|
auto cOffset = shape::getOffset(cShapeInfo, cCoords);
|
|
|
|
if(betaPresent)
|
|
C[cOffset] = alphaZ * val + betaZ * C[cOffset];
|
|
else
|
|
C[cOffset] = alphaZ * val;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void usualGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) {
|
|
|
|
usualCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// MXN x N = M -> actual sequence of {M,N} axes doesn't matter
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void usualCudaGemv(const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo,
|
|
const int incx, const int incy, const int aMaxis, const double alpha, const double beta) {
|
|
|
|
const T1* A = reinterpret_cast<const T1*>(vA);
|
|
const T2* X = reinterpret_cast<const T2*>(vX);
|
|
T3* Y = reinterpret_cast< T3*>(vY);
|
|
|
|
__shared__ int M, N;
|
|
__shared__ bool betaPresent;
|
|
__shared__ Nd4jLong cLen, totalThreads, aNstride, aMstride;
|
|
__shared__ T3 alphaZ, betaZ;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
N = shape::length(xShapeInfo);
|
|
M = shape::length(yShapeInfo);
|
|
|
|
aMstride = shape::stride(aShapeInfo)[aMaxis];
|
|
aNstride = shape::stride(aShapeInfo)[aMaxis == 0 ? 1 : 0];
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
|
|
betaPresent = beta;
|
|
|
|
alphaZ = alpha;
|
|
betaZ = beta;
|
|
}
|
|
__syncthreads();
|
|
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < M; i += totalThreads) {
|
|
|
|
// evaluate offsets
|
|
auto aOffset = i * aMstride;
|
|
auto xOffset = 0;
|
|
|
|
T3 val = A[aOffset] * X[xOffset]; // first iteration
|
|
|
|
for (uint j = 1; j < N; ++j) { // rest iterations
|
|
aOffset += aNstride;
|
|
xOffset += incx;
|
|
val = val + A[aOffset] * X[xOffset];
|
|
}
|
|
|
|
auto yOffset = i * incy;
|
|
|
|
if(betaPresent)
|
|
Y[yOffset] = alphaZ * val + betaZ * Y[yOffset];
|
|
else
|
|
Y[yOffset] = alphaZ * val;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void usualGemv(const int blocksPerGrid, const int threadsPerBlock, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo, const int incx, const int incy, const int aMaxis, const double alpha, const double beta) {
|
|
|
|
usualCudaGemv<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 512, *stream>>>(vA, aShapeInfo, vX, xShapeInfo, vY, yShapeInfo, incx, incy, aMaxis, alpha, beta);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void usualCudaDot(const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
|
|
|
|
T1* X = reinterpret_cast<T1*>(const_cast<void*>(vX));
|
|
T2* Y = reinterpret_cast<T2*>(const_cast<void*>(vY));
|
|
T3* Z = reinterpret_cast<T3*>(vZ);
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
auto pairwiseMul = reinterpret_cast<T3*>(shmem);
|
|
|
|
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if(tid < length)
|
|
pairwiseMul[tid] = X[tid * incx] * Y[tid * incy];
|
|
|
|
__syncthreads();
|
|
|
|
if(tid == 0) {
|
|
T3 sum = 0;
|
|
for(Nd4jLong i = 0; i < length; ++i)
|
|
sum = sum + pairwiseMul[i];
|
|
|
|
if(beta)
|
|
*Z = (T3)alpha * sum + (T3)beta * *Z;
|
|
else
|
|
*Z = (T3)alpha * sum;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void usualDot(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
|
|
|
|
usualCudaDot<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, length*sizeof(T3) + 128, *stream>>>(length, alpha, vX, incx, vY, incy, beta, vZ);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// MXK x KxN = MxN
|
|
NDArray* MmulHelper::mmulMxM(const NDArray* A, const NDArray* B, NDArray* C, double alpha, double beta, const char outOrder) {
|
|
|
|
if(A->rankOf() != 2)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of A array is not equal 2 !");
|
|
if(B->rankOf() != 2)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of B array is not equal 2 !");
|
|
|
|
const auto M = A->sizeAt(0);
|
|
const auto K = A->sizeAt(1);
|
|
const auto N = B->sizeAt(1);
|
|
|
|
if(C != nullptr && C->rankOf() != 2)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of C array is not equal 2 !");
|
|
if(B->sizeAt(0) != K)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: B array has wrong number of rows !");
|
|
if(C != nullptr && C->sizeAt(0) != M)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of rows !");
|
|
if(C != nullptr && C->sizeAt(1) != N)
|
|
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of columns !");
|
|
|
|
if(C == nullptr)
|
|
C = new NDArray(outOrder, {M,N}, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext());
|
|
|
|
const int major = Environment::getInstance()->capabilities()[AffinityManager::currentDeviceId()].first();
|
|
|
|
const auto aType = A->dataType();
|
|
const auto bType = B->dataType();
|
|
const auto cType = C->dataType();
|
|
|
|
const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC);
|
|
|
|
const bool typeDouble = ABC && aType == DataType::DOUBLE;
|
|
const bool typeFloat = ABC && aType == DataType::FLOAT32;
|
|
const bool typeHalf = ABC && aType == DataType::HALF && major >= 6;
|
|
const bool typeIntFloat = AB && aType == DataType::INT8 && cType == DataType::FLOAT32 && major >= 6;
|
|
const bool typeHalfFloat = AB && aType == DataType::HALF && cType == DataType::FLOAT32 && major >= 6;
|
|
|
|
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
|
|
auto stream = A->getContext()->getCudaStream();
|
|
|
|
auto status = cublasSetStream_v2(*handle, *stream);
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
|
|
|
|
if(!typeDouble && !typeFloat && !typeHalf && !typeIntFloat && !typeHalfFloat) {
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * 6 + 128; // 6 = aRank + bRank + cRank
|
|
|
|
NDArray::prepareSpecialUse({C}, {A, B});
|
|
// BUILD_TRIPLE_SELECTOR(aType, bType, cType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES)
|
|
NDArray::registerSpecialUse({C}, {A, B});
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0)
|
|
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult);
|
|
}
|
|
else {
|
|
|
|
std::vector<NDArray*> toDelete;
|
|
|
|
NDArray *pA(const_cast<NDArray*>(A)), *pB(const_cast<NDArray*>(B)), *pC(const_cast<NDArray*>(C));
|
|
|
|
bool aMcont = M == 1 || A->strideAt(0) == 1;
|
|
bool aKcont = K == 1 || A->strideAt(1) == 1;
|
|
bool bKcont = K == 1 || B->strideAt(0) == 1;
|
|
bool bNcont = N == 1 || B->strideAt(1) == 1;
|
|
bool cMcont = M == 1 || C->strideAt(0) == 1;
|
|
bool cNcont = N == 1 || C->strideAt(1) == 1;
|
|
|
|
if(!aMcont && !aKcont) {
|
|
pA = new NDArray(A->dup('f'));
|
|
toDelete.push_back(pA);
|
|
aMcont = true;
|
|
}
|
|
if(!bKcont && !bNcont) {
|
|
pB = new NDArray(B->dup('f'));
|
|
toDelete.push_back(pB);
|
|
bKcont = true;
|
|
}
|
|
if(!cMcont) {
|
|
pC = new NDArray(C->dup('f'));
|
|
toDelete.push_back(pC);
|
|
cMcont = true;
|
|
}
|
|
|
|
const bool transA = !aMcont;
|
|
const bool transB = !bKcont;
|
|
|
|
const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1);
|
|
const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(0) : pB->strideAt(1);
|
|
const int ldc = (cMcont && cNcont) ? M : pC->strideAt(1);
|
|
|
|
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
NDArray::prepareSpecialUse({pC}, {pA, pB});
|
|
|
|
// choose appropriate cuda gemm api depending on data types
|
|
if(typeDouble) {
|
|
status = cublasDgemm(*handle, transAblas, transBblas, M, N, K, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)pB->getSpecialBuffer(), ldb, &beta, (double*)pC->getSpecialBuffer(), ldc);
|
|
}
|
|
else if(typeFloat) {
|
|
float alphaF(alpha), betaF(beta);
|
|
status = cublasSgemm(*handle, transAblas, transBblas, M, N, K, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)pB->getSpecialBuffer(), ldb, &betaF, (float*)pC->getSpecialBuffer(), ldc);
|
|
}
|
|
else if(typeHalf) {
|
|
float16 alphaH(alpha), betaH(beta);
|
|
status = cublasHgemm(*handle, transAblas, transBblas, M, N, K, &alphaH.data, (__half*)pA->getSpecialBuffer(), lda, (__half*)pB->getSpecialBuffer(), ldb, &betaH.data, (__half*)pC->getSpecialBuffer(), ldc);
|
|
}
|
|
else if(typeIntFloat) {
|
|
float alphaF(alpha), betaF(beta);
|
|
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_8I, lda, pB->getSpecialBuffer(), CUDA_R_8I, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
|
|
}
|
|
else if(typeHalfFloat) {
|
|
float alphaF(alpha), betaF(beta);
|
|
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_16F, lda, pB->getSpecialBuffer(), CUDA_R_16F, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
|
|
}
|
|
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
|
|
|
|
NDArray::registerSpecialUse({pC}, {pA, pB});
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0)
|
|
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult);
|
|
|
|
if(C != pC)
|
|
C->assign(pC);
|
|
|
|
for(int i = toDelete.size() - 1; i >= 0; --i)
|
|
delete toDelete[i];
|
|
}
|
|
|
|
return C;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// MXN x N = M
|
|
NDArray* MmulHelper::mmulMxV(const NDArray* A, const NDArray* X, nd4j::NDArray* Y, const double alpha, const double beta, const char outOrder) {
|
|
|
|
int xLenDim, yLenDim(0);
|
|
|
|
if(A->rankOf() != 2)
|
|
throw std::runtime_error("MmulHelper::mmulMxV cuda: rank of A array is not equal 2 !");
|
|
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
|
|
throw std::runtime_error("MmulHelper::mmulMxV cuda: X array must be vector !");
|
|
|
|
const auto M = A->sizeAt(0);
|
|
const auto N = A->sizeAt(1);
|
|
|
|
if(Y != nullptr && !shape::isCommonVector(Y->getShapeInfo(), yLenDim))
|
|
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array must be vector !");
|
|
if(X->lengthOf() != N)
|
|
throw std::runtime_error("MmulHelper::mmulMxV cuda: X vector has wrong length !");
|
|
if(Y != nullptr && Y->lengthOf() != M)
|
|
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array has wrong length !");
|
|
|
|
if(Y == nullptr)
|
|
Y = new NDArray(outOrder, {M}, DataTypeUtils::pickPairwiseResultType(A->dataType(), X->dataType()), A->getContext());
|
|
|
|
const int incx = X->strideAt(xLenDim);
|
|
const int incy = Y->strideAt(yLenDim);
|
|
|
|
const auto aType = A->dataType();
|
|
const auto xType = X->dataType();
|
|
const auto yType = Y->dataType();
|
|
|
|
const bool AX(aType == xType), AY(aType == yType), AXY(AX && AY);
|
|
|
|
const bool typeDouble = AXY && aType == DataType::DOUBLE;
|
|
const bool typeFloat = AXY && aType == DataType::FLOAT32;
|
|
|
|
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
|
|
auto stream = A->getContext()->getCudaStream();
|
|
|
|
auto status = cublasSetStream_v2(*handle, *stream);
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
|
|
|
|
if(!typeDouble && !typeFloat) {
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS;
|
|
const int blocksPerGrid = (M + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
NDArray::prepareSpecialUse({Y}, {A, X});
|
|
// BUILD_TRIPLE_SELECTOR(aType, xType, yType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), X->getSpecialBuffer(), X->getSpecialShapeInfo(), Y->getSpecialBuffer(), Y->getSpecialShapeInfo(), incx, incy, 0, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
BUILD_SINGLE_SELECTOR_THRICE(xType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), X->getSpecialBuffer(), X->getSpecialShapeInfo(), Y->getSpecialBuffer(), Y->getSpecialShapeInfo(), incx, incy, 0, alpha, beta), NUMERIC_TYPES)
|
|
NDArray::registerSpecialUse({Y}, {A, X});
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0)
|
|
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult);
|
|
|
|
}
|
|
else {
|
|
|
|
NDArray *pA(const_cast<NDArray*>(A));
|
|
|
|
bool aMcont = M == 1 || A->strideAt(0) == 1;
|
|
bool aNcont = N == 1 || A->strideAt(1) == 1;
|
|
|
|
if(!aMcont && !aNcont) {
|
|
pA = new NDArray(A->dup('f'));
|
|
aMcont = true;
|
|
}
|
|
|
|
const bool transA = !aMcont;
|
|
|
|
const int lda = (aMcont && aNcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1);
|
|
|
|
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
NDArray::prepareSpecialUse({Y}, {pA, X});
|
|
|
|
// choose appropriate cuda gemm api depending on data types
|
|
if(typeDouble) {
|
|
status = cublasDgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)X->getSpecialBuffer(), incx, &beta, (double*)Y->getSpecialBuffer(), incy);
|
|
}
|
|
else if(typeFloat) {
|
|
float alphaF(alpha), betaF(beta);
|
|
status = cublasSgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)X->getSpecialBuffer(), incx, &betaF, (float*)Y->getSpecialBuffer(), incy);
|
|
}
|
|
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0)
|
|
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult);
|
|
|
|
NDArray::registerSpecialUse({Y}, {pA, X});
|
|
|
|
if(pA != A)
|
|
delete pA;
|
|
}
|
|
|
|
return Y;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// (X * Y) = Z[0]
|
|
NDArray* MmulHelper::dot(const NDArray* X, const NDArray* Y, nd4j::NDArray* Z, const double alpha, const double beta) {
|
|
|
|
int xLenDim(0), yLenDim(0);
|
|
|
|
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
|
|
throw std::runtime_error("MmulHelper::dot cuda: X array must be vector !");
|
|
if(!shape::isCommonVector(Y->getShapeInfo(), yLenDim))
|
|
throw std::runtime_error("MmulHelper::dot cuda: Y array must be vector !");
|
|
if(Z != nullptr && !Z->isScalar())
|
|
throw std::runtime_error("MmulHelper::dot cuda: Z array must be scalar !");
|
|
|
|
const auto length = X->lengthOf();
|
|
|
|
if(Y->lengthOf() != length)
|
|
throw std::runtime_error("MmulHelper::dot cuda: lengths of input vectors are different !");
|
|
|
|
if(Z == nullptr)
|
|
Z = new NDArray(DataTypeUtils::pickPairwiseResultType(X->dataType(), Y->dataType()), X->getContext());
|
|
|
|
const Nd4jLong incx = X->strideAt(xLenDim);
|
|
const Nd4jLong incy = Y->strideAt(yLenDim);
|
|
|
|
const auto xType = X->dataType();
|
|
const auto yType = Y->dataType();
|
|
const auto zType = Z->dataType();
|
|
|
|
if(!X->isActualOnDeviceSide()) X->syncToDevice();
|
|
if(!Y->isActualOnDeviceSide()) Y->syncToDevice();
|
|
if(!Z->isActualOnDeviceSide()) Z->syncToDevice();
|
|
|
|
cudaStream_t* stream = X->getContext()->getCudaStream();
|
|
|
|
dim3 threadsPerBlock(512);
|
|
dim3 blocksPerGrid(1);
|
|
if (length > 512)
|
|
threadsPerBlock.x = math::nd4j_ceil<double, int>(static_cast<double>(length) / 512);
|
|
|
|
NDArray::prepareSpecialUse({Z}, {X, Y});
|
|
|
|
//BUILD_TRIPLE_SELECTOR(xType, yType, zType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
BUILD_SINGLE_SELECTOR_THRICE(xType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES)
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0) throw cuda_exception::build("MmulHelper::dot cuda failed !", cudaResult);
|
|
|
|
NDArray::registerSpecialUse({Z}, {X, Y});
|
|
|
|
return Z;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// [bS,M,K] x [bS,K,N] = [bS,M,N]
|
|
// [bS,M,K] x [K,N] = [bS,M,N]
|
|
// [M,K] x [bS,K,N] = [bS,M,N]
|
|
// bS could stand for several axes
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void batchedCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo,
|
|
const int* aBatchDims, const int* bBatchDims, const int* cBatchDims,
|
|
const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis,
|
|
const double alpha, const double beta) {
|
|
|
|
const T1* A = reinterpret_cast<const T1*>(vA);
|
|
const T2* B = reinterpret_cast<const T2*>(vB);
|
|
T3* C = reinterpret_cast< T3*>(vC);
|
|
|
|
__shared__ bool betaPresent;
|
|
__shared__ int aRank, bRank, cRank, K;
|
|
__shared__ Nd4jLong cLen, totalThreads, *coords;
|
|
__shared__ T3 alphaZ, betaZ;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
coords = reinterpret_cast<Nd4jLong*>(shmem);
|
|
cLen = shape::length(cShapeInfo);
|
|
|
|
K = shape::shapeOf(const_cast<Nd4jLong*>(aShapeInfo))[aKaxis];
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
aRank = shape::rank(aShapeInfo);
|
|
bRank = shape::rank(bShapeInfo);
|
|
cRank = shape::rank(cShapeInfo);
|
|
|
|
betaPresent = beta;
|
|
|
|
alphaZ = alpha;
|
|
betaZ = beta;
|
|
}
|
|
__syncthreads();
|
|
|
|
auto aCoords = coords + threadIdx.x * (aRank + bRank + cRank);
|
|
auto bCoords = aCoords + aRank;
|
|
auto cCoords = bCoords + bRank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < cLen; i += totalThreads) {
|
|
|
|
// evaluate C coordinates
|
|
shape::index2coords(i, cShapeInfo, cCoords);
|
|
|
|
// calculate index of current batch
|
|
Nd4jLong batchInd;
|
|
if(cBatchDims != nullptr)
|
|
batchInd = shape::coords2index(cShapeInfo, cCoords, cRank - 2, cBatchDims);
|
|
|
|
// evaluate A coordinates
|
|
if(aBatchDims != nullptr)
|
|
shape::index2coords(batchInd, aShapeInfo, aCoords, aRank - 2, aBatchDims);
|
|
aCoords[aMaxis] = cCoords[cMaxis];
|
|
aCoords[aKaxis] = 0;
|
|
|
|
// evaluate B coordinates
|
|
if(bBatchDims != nullptr)
|
|
shape::index2coords(batchInd, bShapeInfo, bCoords, bRank - 2, bBatchDims);
|
|
bCoords[bKaxis] = 0;
|
|
bCoords[bNaxis] = cCoords[cNaxis];
|
|
|
|
auto aOffset = shape::getOffset(aShapeInfo, aCoords);
|
|
auto bOffset = shape::getOffset(bShapeInfo, bCoords);
|
|
|
|
T3 val = A[aOffset] * B[bOffset]; // first iteration
|
|
|
|
for (uint j = 1; j < K; ++j) { // rest iterations
|
|
aOffset += shape::stride(aShapeInfo)[aKaxis];
|
|
bOffset += shape::stride(bShapeInfo)[bKaxis];
|
|
val = val + A[aOffset] * B[bOffset];
|
|
}
|
|
|
|
auto cOffset = shape::getOffset(cShapeInfo, cCoords);
|
|
|
|
if(betaPresent)
|
|
C[cOffset] = alphaZ * val + betaZ * C[cOffset];
|
|
else
|
|
C[cOffset] = alphaZ * val;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void batchedGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int* aBatchDims, const int* bBatchDims, const int* cBatchDims, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) {
|
|
|
|
batchedCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
|
|
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
|
|
// input ranks validation
|
|
if(aRank > bRank && bRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
|
|
else if(bRank > aRank && aRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
|
|
else if (aRank == bRank ) {
|
|
for(int i = 0; i < aRank - 2; ++i)
|
|
if(A->sizeAt(i) != B->sizeAt(i))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
}
|
|
|
|
if(A->sizeAt(-1) != B->sizeAt(-2))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
|
|
// validation of C array
|
|
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
|
|
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
|
|
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
|
|
|
|
if(C != nullptr ) {
|
|
if(!C->isSameShape(cExpectedShape))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
|
|
}
|
|
else
|
|
C = new NDArray(outOrder, cExpectedShape, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext());
|
|
|
|
const int cRank = C->rankOf();
|
|
|
|
const int aMaxis(aRank-2), aKaxis(aRank-1), bKaxis(bRank-2), bNaxis(bRank-1), cMaxis(cRank-2), cNaxis(cRank-1);
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 8;
|
|
const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * (aRank + bRank + cRank) + 128;
|
|
|
|
PointersManager manager(A->getContext(), "MmulHelper::mmulNxN");
|
|
|
|
const int *aBatchDims(nullptr), *bBatchDims(nullptr), *cBatchDims(nullptr);
|
|
|
|
if(aRank > 2)
|
|
aBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(aRank, {aMaxis, aKaxis}).data(), (aRank - 2) * sizeof(int)));
|
|
if(bRank > 2)
|
|
bBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(bRank, {bKaxis, bNaxis}).data(), (bRank - 2) * sizeof(int)));
|
|
if(cRank > 2)
|
|
cBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(cRank, {cMaxis, cNaxis}).data(), (cRank - 2) * sizeof(int)));
|
|
|
|
NDArray::prepareSpecialUse({C}, {A, B});
|
|
// BUILD_TRIPLE_SELECTOR(A->dataType(), b->dataType(), C->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, A->getContext()->getCudaStream(), A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
BUILD_SINGLE_SELECTOR_THRICE(A->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, sharedMem, A->getContext()->getCudaStream(), A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES)
|
|
NDArray::registerSpecialUse({C}, {A, B});
|
|
|
|
manager.synchronize();
|
|
|
|
return C;
|
|
}
|
|
|
|
|
|
/*
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// MXN x N = M
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void usualCudaGemv(const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
|
|
|
|
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
|
|
T2* X = reinterpret_cast<T2*>(const_cast<void*>(vX));
|
|
T3* Y = reinterpret_cast<T3*>(vY);
|
|
|
|
__shared__ T3 alphaZ, betaZ;
|
|
__shared__ Nd4jLong strideArow, strideAcol;
|
|
|
|
const int row = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if(row == 0) {
|
|
|
|
alphaZ = alpha;
|
|
betaZ = beta;
|
|
|
|
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
T3 val = 0;
|
|
if (row < M)
|
|
for (int i = 0; i < N; i++)
|
|
val = val + A[row * strideArow + i * strideAcol] * X[i * incx];
|
|
|
|
Y[row * incy] = alphaZ * val + betaZ * Y[row * incy];
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void usualGemv(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
|
|
|
|
usualCudaGemv<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, M, N, alpha, vA, lda, vX, incx, beta, vY, incy);
|
|
}
|
|
*/
|
|
/*
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
MXK x KxN = MxN
|
|
C array must be in f order
|
|
template <typename T1, typename T2, typename T3>
|
|
static __global__ void usualCudaGemm(const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
|
|
|
|
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
|
|
T2* B = reinterpret_cast<T2*>(const_cast<void*>(vB));
|
|
T3* C = reinterpret_cast<T3*>(vC);
|
|
|
|
__shared__ T3 alphaZ, betaZ;
|
|
__shared__ Nd4jLong strideArow, strideAcol, strideBrow, strideBcol;
|
|
|
|
const int row = blockIdx.y * blockDim.y + threadIdx.y;
|
|
const int col = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if(row == 0 && col == 0) {
|
|
|
|
alphaZ = alpha;
|
|
betaZ = beta;
|
|
|
|
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
|
|
if(transB) { strideBrow = ldb; strideBcol = 1; } else { strideBrow = 1; strideBcol = ldb; }
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
T3 val = 0;
|
|
if (row < M && col < N)
|
|
for (int i = 0; i < K; i++)
|
|
val = val + A[row * strideArow + i * strideAcol] * B[i * strideBrow + col * strideBcol];
|
|
|
|
C[row + col * ldc] = alphaZ * val + betaZ * C[row + col * ldc];
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
template <typename T1, typename T2, typename T3>
|
|
__host__ static void usualGemm(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
|
|
|
|
usualCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, transB, M, N, K, alpha, vA, lda, vB, ldb, beta, vC, ldc);
|
|
}
|
|
*/
|
|
//////////////////////////////////////////////////////////////////////////
|
|
/*
|
|
NDArray* MmulHelper::mmulNxNold1(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
|
|
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
|
|
// input ranks validation
|
|
if(aRank > bRank && bRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
|
|
else if(bRank > aRank && aRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
|
|
else if (aRank == bRank ) {
|
|
for(int i = 0; i < aRank - 2; ++i)
|
|
if(A->sizeAt(i) != B->sizeAt(i))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
}
|
|
|
|
if(A->sizeAt(-1) != B->sizeAt(-2))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
|
|
// validation of C array
|
|
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
|
|
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
|
|
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
|
|
|
|
if(C != nullptr ) {
|
|
if(!C->isSameShape(cExpectedShape))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
|
|
}
|
|
else {
|
|
C = new NDArray(outOrder, cExpectedShape, B->dataType());
|
|
}
|
|
|
|
|
|
// multiplication
|
|
const std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(C->rankOf(), {-2, -1});
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(C->getShapeInfo(), dimsToExclude);
|
|
std::vector<Nd4jLong> idxRanges(2 * C->rankOf());
|
|
|
|
// #pragma omp parallel for schedule(guided) firstprivate(idxRanges)
|
|
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
|
|
|
|
ShapeUtils::evalIdxRangesForSubArr(i, C->getShapeInfo(), dimsToExclude, idxRanges.data());
|
|
NDArray cSubArr = (*C)(idxRanges);
|
|
|
|
if(aRank > bRank) {
|
|
NDArray aSubArr = (*A)(idxRanges);
|
|
mmulMxM(&aSubArr, B, &cSubArr, 1., 0., outOrder);
|
|
}
|
|
else if(bRank > aRank) {
|
|
NDArray bSubArr = (*B)(idxRanges);
|
|
mmulMxM(A, &bSubArr, &cSubArr, 1., 0, outOrder);
|
|
}
|
|
else {
|
|
NDArray aSubArr = (*A)(idxRanges);
|
|
NDArray bSubArr = (*B)(idxRanges);
|
|
mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., outOrder);
|
|
}
|
|
}
|
|
|
|
return C;
|
|
}
|
|
*/
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// [bS,M,K] x [bS,K,N] = [bS,M,N]
|
|
// [bS,M,K] x [K,N] = [bS,M,N]
|
|
// [M,K] x [bS,K,N] = [bS,M,N]
|
|
// bS could stand for several axes
|
|
/*
|
|
NDArray* MmulHelper::mmulNxNold2(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
|
|
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
|
|
// input ranks validation
|
|
if(aRank > bRank && bRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
|
|
else if(bRank > aRank && aRank != 2)
|
|
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
|
|
else if (aRank == bRank ) {
|
|
for(int i = 0; i < aRank - 2; ++i)
|
|
if(A->sizeAt(i) != B->sizeAt(i))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
}
|
|
|
|
if(A->sizeAt(-1) != B->sizeAt(-2))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
|
|
|
|
// validation of C array
|
|
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
|
|
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
|
|
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
|
|
|
|
if(C != nullptr ) {
|
|
if(!C->isSameShape(cExpectedShape))
|
|
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
|
|
}
|
|
else
|
|
C = new NDArray(outOrder, cExpectedShape, B->dataType());
|
|
|
|
const int cRank = C->rankOf();
|
|
|
|
const auto M = A->sizeAt(-2);
|
|
const auto K = A->sizeAt(-1);
|
|
const auto N = B->sizeAt(-1);
|
|
|
|
NDArray *pA(const_cast<NDArray*>(A)), *pB(const_cast<NDArray*>(B)), *pC(const_cast<NDArray*>(C));
|
|
std::vector<NDArray*> toDelete;
|
|
|
|
bool aMcont = M == 1 || A->strideAt(-2) == 1;
|
|
bool aKcont = K == 1 || A->strideAt(-1) == 1;
|
|
bool bKcont = K == 1 || B->strideAt(-2) == 1;
|
|
bool bNcont = N == 1 || B->strideAt(-1) == 1;
|
|
bool cMcont = M == 1 || C->strideAt(-2) == 1;
|
|
bool cNcont = N == 1 || C->strideAt(-1) == 1;
|
|
|
|
if(!aMcont && !aKcont) {
|
|
pA = new NDArray(A->dup('c'));
|
|
toDelete.push_back(pA);
|
|
aKcont = true;
|
|
}
|
|
if(!bKcont && !bNcont) {
|
|
pB = new NDArray(B->dup('c'));
|
|
toDelete.push_back(pB);
|
|
bNcont = true;
|
|
}
|
|
std::vector<int> permut(cRank);
|
|
if(!cMcont) {
|
|
std::iota(permut.begin(), permut.end(), 0);
|
|
permut[cRank - 2] = cRank - 1;
|
|
permut[cRank - 1] = cRank - 2; // swap two last dimensions [..., M,N] -> [..., N,M]
|
|
auto Cpermut = C->permute(permut);
|
|
pC = new NDArray('c', Cpermut.getShapeAsVector(), Cpermut.dataType(), A->getContext());
|
|
pC->assign(Cpermut);
|
|
toDelete.push_back(pC);
|
|
cMcont = true;
|
|
}
|
|
|
|
|
|
const auto aType = pA->dataType();
|
|
const auto bType = pB->dataType();
|
|
const auto cType = pC->dataType();
|
|
|
|
const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC);
|
|
|
|
bool badTypes = false;
|
|
cudaDataType_t cudaType, cudaAType, cudaBType, cudaCType;
|
|
|
|
if(ABC && aType == DataType::HALF) {
|
|
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_16F;
|
|
}
|
|
else if(ABC && aType == DataType::FLOAT32) {
|
|
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_32F;
|
|
}
|
|
else if(ABC && aType == DataType::DOUBLE) {
|
|
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_64F;
|
|
}
|
|
else if(AB && cType == DataType::FLOAT32 && aType == DataType::INT8) {
|
|
cudaType = cudaCType = CUDA_R_32F;
|
|
cudaAType = cudaBType = CUDA_R_8I;
|
|
}
|
|
else if(AB && cType == DataType::FLOAT32 && aType == DataType::HALF) {
|
|
cudaType = cudaCType = CUDA_R_32F;
|
|
cudaAType = cudaBType = CUDA_R_16F;
|
|
}
|
|
else
|
|
badTypes = true;
|
|
|
|
const int bS = pC->lengthOf() / (M*N);
|
|
|
|
const std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(cRank, {-2, -1});
|
|
|
|
NDArray::prepareSpecialUse({pC}, {pA, pB});
|
|
|
|
if(!badTypes) {
|
|
|
|
std::vector<Nd4jLong> subArrOffsets(bS);
|
|
std::vector<Nd4jLong> subArrShapeInfo(shape::shapeInfoLength(2)); // all sub-arrays have rank = 2
|
|
|
|
std::vector<void*> aSubArrs(bS), bSubArrs(bS), cSubArrs(bS);
|
|
|
|
if(aRank > 2)
|
|
shape::calcSubArrShapeAndOffsets(pA->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
|
|
for (int i = 0; i < bS; ++i)
|
|
aSubArrs[i] = aRank == 2 ? pA->getSpecialBuffer() : pA->getSpecialBuffer() + subArrOffsets[i] * pA->sizeOfT();
|
|
|
|
if(bRank > 2)
|
|
shape::calcSubArrShapeAndOffsets(pB->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
|
|
for (int i = 0; i < bS; ++i)
|
|
bSubArrs[i] = bRank == 2 ? pB->getSpecialBuffer() : pB->getSpecialBuffer() + subArrOffsets[i] * pB->sizeOfT();
|
|
|
|
shape::calcSubArrShapeAndOffsets(pC->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
|
|
for (int i = 0; i < bS; ++i)
|
|
cSubArrs[i] = pC->getSpecialBuffer() + subArrOffsets[i] * pC->sizeOfT();
|
|
|
|
PointersManager manager(A->getContext(), "mmulNxN");
|
|
|
|
const void** aSubArrsCuda = reinterpret_cast<const void **>(manager.replicatePointer(aSubArrs.data(), aSubArrs.size() * sizeof(void*)));
|
|
const void** bSubArrsCuda = reinterpret_cast<const void **>(manager.replicatePointer(bSubArrs.data(), bSubArrs.size() * sizeof(void*)));
|
|
void** cSubArrsCuda = reinterpret_cast< void **>(manager.replicatePointer(cSubArrs.data(), cSubArrs.size() * sizeof(void*)));
|
|
|
|
const bool transA = !aMcont;
|
|
const bool transB = !bKcont;
|
|
|
|
const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(-2) : pA->strideAt(-1);
|
|
const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(-2) : pB->strideAt(-1);
|
|
const int ldc = (cMcont && cNcont) ? M : C != pC ? pC->strideAt(-2) : pC->strideAt(-1);
|
|
|
|
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
union Coeff {__half _h; float _f; double _d; };
|
|
Coeff uAlpha, uBeta;
|
|
|
|
if(cudaType == CUDA_R_16F) {
|
|
uAlpha._h = alpha;
|
|
uBeta._h = beta;
|
|
}
|
|
else if(cudaType == CUDA_R_32F) {
|
|
uAlpha._f = alpha;
|
|
uBeta._f = beta;
|
|
}
|
|
else if(cudaType == CUDA_R_64F) {
|
|
uAlpha._d = alpha;
|
|
uBeta._d = beta;
|
|
}
|
|
|
|
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
|
|
auto stream = A->getContext()->getCudaStream();
|
|
|
|
auto status = cublasSetStream_v2(*handle, *stream);
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status);
|
|
|
|
status = cublasGemmBatchedEx(*handle, transAblas, transBblas, M, N, K, &uAlpha, aSubArrsCuda, cudaAType, lda, bSubArrsCuda, cudaBType, ldb, &uBeta, cSubArrsCuda, cudaCType, ldc, bS, cudaType, CUBLAS_GEMM_DEFAULT);
|
|
|
|
if (status != CUBLAS_STATUS_SUCCESS)
|
|
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status);
|
|
|
|
auto cudaResult = cudaStreamSynchronize(*stream);
|
|
if (cudaResult != 0)
|
|
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", cudaResult);
|
|
}
|
|
else {
|
|
|
|
std::vector<Nd4jLong> idxRanges(2 * pC->rankOf());
|
|
|
|
for(Nd4jLong i = 0; i < bS; ++i) {
|
|
|
|
ShapeUtils::evalIdxRangesForSubArr(i, pC->getShapeInfo(), dimsToExclude, idxRanges.data());
|
|
NDArray cSubArr = (*pC)(idxRanges);
|
|
|
|
if(aRank > bRank) {
|
|
NDArray aSubArr = (*pA)(idxRanges);
|
|
mmulMxM(&aSubArr, pB, &cSubArr, 1., 0., pC->ordering());
|
|
}
|
|
else if(bRank > aRank) {
|
|
NDArray bSubArr = (*pB)(idxRanges);
|
|
mmulMxM(pA, &bSubArr, &cSubArr, 1., 0, pC->ordering());
|
|
}
|
|
else {
|
|
NDArray aSubArr = (*pA)(idxRanges);
|
|
NDArray bSubArr = (*pB)(idxRanges);
|
|
mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., pC->ordering());
|
|
}
|
|
}
|
|
}
|
|
|
|
NDArray::registerSpecialUse({pC}, {pA, pB});
|
|
|
|
if(C != pC)
|
|
C->assign(pC->permute(permut));
|
|
|
|
for(int i = toDelete.size() - 1; i >= 0; --i)
|
|
delete toDelete[i];
|
|
|
|
return C;
|
|
}
|
|
*/
|
|
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vB, const int incx, const double beta, void* vC, const int incy), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
|
|
|
|
} |