cavis/nd4s
raver119 29e8e09db6
String changes (#3)
* initial commit

* additional data types & tensor type

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* missing include

* sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests files

Signed-off-by: raver119 <raver119@gmail.com>

* draft

Signed-off-by: raver119 <raver119@gmail.com>

* numeric sparse_to_dense

Signed-off-by: raver119 <raver119@gmail.com>

* comment

Signed-off-by: raver119 <raver119@gmail.com>

* string sparse_to_dense version

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer expand

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for CUDA build

Signed-off-by: raver119 <raver119@gmail.com>

* shape fn for string_split

Signed-off-by: raver119 <raver119@gmail.com>

* one more comment

Signed-off-by: raver119 <raver119@gmail.com>

* string_split indices

Signed-off-by: raver119 <raver119@gmail.com>

* next step

Signed-off-by: raver119 <raver119@gmail.com>

* test passes

Signed-off-by: raver119 <raver119@gmail.com>

* few rearrangements for databuffer implementations

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer: move inline methods to common implementations

Signed-off-by: raver119 <raver119@gmail.com>

* add native DataBuffer to Nd4j presets

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer creation

Signed-off-by: raver119 <raver119@gmail.com>

* use DataBuffer for allocation

Signed-off-by: raver119 <raver119@gmail.com>

* cpu databuffer as deallocatable

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer setters for bufers

Signed-off-by: raver119 <raver119@gmail.com>

* couple of wrappers

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffers being passed around

Signed-off-by: raver119 <raver119@gmail.com>

* Bunch of ByteBuffer-related signatures gone

Signed-off-by: raver119 <raver119@gmail.com>

* - few more Nd4j signatures removed
- minor fix for bfloat16

Signed-off-by: raver119 <raver119@gmail.com>

* nullptr pointer is still a pointer, but 0 as address :)

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* empty string array init

Signed-off-by: raver119 <raver119@gmail.com>

* one more test in cpp

Signed-off-by: raver119 <raver119@gmail.com>

* memcpy instead of databuffer swap

Signed-off-by: raver119 <raver119@gmail.com>

* special InteropDataBuffer for front-end languages

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks for java

Signed-off-by: raver119 <raver119@gmail.com>

* pointer/indexer actualization

Signed-off-by: raver119 <raver119@gmail.com>

* CustomOp returns list for inputArumgents and outputArguments instead of array

Signed-off-by: raver119 <raver119@gmail.com>

* redundant call

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable op

Signed-off-by: raver119 <raver119@gmail.com>

* - view handling (but wrong one)
- print_variable java wrapper

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* - empty arrays handling

Signed-off-by: raver119 <raver119@gmail.com>

* - deserialization works now

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* one more fix

Signed-off-by: raver119 <raver119@gmail.com>

* initial cuda commit

Signed-off-by: raver119 <raver119@gmail.com>

* print_variable message validation

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA views

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA special buffer size

Signed-off-by: raver119 <raver119@gmail.com>

* minor update to match master changes

Signed-off-by: raver119 <raver119@gmail.com>

* - consider arrays always actual on device for CUDA
- additional PrintVariable constructor
- CudaUtf8Buffer now allocates host buffer by default

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - print_variable now allows print from device

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer data type fix

Signed-off-by: raver119 <raver119@gmail.com>

* ...

Signed-off-by: raver119 <raver119@gmail.com>

* disable some debug messages

Signed-off-by: raver119 <raver119@gmail.com>

* master pulled in

Signed-off-by: raver119 <raver119@gmail.com>

* couple of new methods for DataBuffer interop

Signed-off-by: raver119 <raver119@gmail.com>

* java side

Signed-off-by: raver119 <raver119@gmail.com>

* offsetted constructor

Signed-off-by: raver119 <raver119@gmail.com>

* new CUDA deallocator

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 2

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA backend torn apart 3

Signed-off-by: raver119 <raver119@gmail.com>

* - few new tests
- few new methods for DataBuffer management

Signed-off-by: raver119 <raver119@gmail.com>

* few more tests + few more tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* two failing tests pass

Signed-off-by: raver119 <raver119@gmail.com>

* now we pass DataBuffer to legacy ops too

Signed-off-by: raver119 <raver119@gmail.com>

* Native DataBuffer for legacy ops, Java side

Signed-off-by: raver119 <raver119@gmail.com>

* CPU java side update

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA java side update

Signed-off-by: raver119 <raver119@gmail.com>

* no more prepare/register action on java side

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray::prepare/register use now accepts vectors

Signed-off-by: raver119 <raver119@gmail.com>

* InteropDataBuffer now has few more convenience methods

Signed-off-by: raver119 <raver119@gmail.com>

* java bindings update

Signed-off-by: raver119 <raver119@gmail.com>

* tick device in NativeOps

Signed-off-by: raver119 <raver119@gmail.com>

* Corrected usage of OpaqueBuffer for tests.

* Corrected usage of OpaqueBuffer for java tests.

* NativeOpsTests fixes.

* print_variable now returns scalar

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* compat_string_split fix for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA execScalar fix
- CUDA lazyAllocateHostPointer now checks java indexer/pointer instead of native pointer

Signed-off-by: raver119 <raver119@gmail.com>

* legacy ops DataBuffer migration prototype

Signed-off-by: raver119 <raver119@gmail.com>

* ignore device shapeinfo coming from java

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor transformAny fix

Signed-off-by: raver119 <raver119@gmail.com>

* minor tweak for lazy host allocation

Signed-off-by: raver119 <raver119@gmail.com>

* - DataBuffer::memcpy method
- bitcast now uses memcpy

Signed-off-by: raver119 <raver119@gmail.com>

* - IndexReduce CUDA dimension buffer fix

Signed-off-by: raver119 <raver119@gmail.com>

* views for CPU and CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less spam

Signed-off-by: raver119 <raver119@gmail.com>

* optional memory init

Signed-off-by: raver119 <raver119@gmail.com>

* async memset

Signed-off-by: raver119 <raver119@gmail.com>

* - SummaryStats CUDA fix
- DataBuffer.sameUnderlyingData() impl
- execBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* - reduce3All fix
switch to CUDA 10 temporarily

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA version

Signed-off-by: raver119 <raver119@gmail.com>

* proper memory deallocator registration

Signed-off-by: raver119 <raver119@gmail.com>

* HOST_ONLY workspace allocation

Signed-off-by: raver119 <raver119@gmail.com>

* temp commit

Signed-off-by: raver119 <raver119@gmail.com>

* few conflicts resolved

Signed-off-by: raver119 <raver119@gmail.com>

* few minor fixes

Signed-off-by: raver119 <raver119@gmail.com>

* one more minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* NDArray permute should operate on JVM primitives

Signed-off-by: raver119 <raver119@gmail.com>

* - create InteropDataBuffer for shapes as well
- update pointers after view creation in Java

Signed-off-by: raver119 <raver119@gmail.com>

* - addressPointer temporary moved to C++

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: don't account offset twice

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA: DataBuffer pointer constructor updated

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA NDArray.unsafeDuplication() simplified

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA minor workspace-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* CPU DataBuffer.reallocate()

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity op

Signed-off-by: raver119 <raver119@gmail.com>

* print_affinity java side

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA more tweaks for data locality

Signed-off-by: raver119 <raver119@gmail.com>

* - compat_string_split tweak
- CudaUtf8Buffer update

Signed-off-by: raver119 <raver119@gmail.com>

* INDArray.close() mechanic restored

Signed-off-by: raver119 <raver119@gmail.com>

* one more test fixed

Signed-off-by: raver119 <raver119@gmail.com>

* - CUDA DataBuffer.reallocate() updated
- cudaMemcpy (synchronous) restored

Signed-off-by: raver119 <raver119@gmail.com>

* one last fix

Signed-off-by: raver119 <raver119@gmail.com>

* bad import removed

Signed-off-by: raver119 <raver119@gmail.com>

* another small fix

Signed-off-by: raver119 <raver119@gmail.com>

* one special test

Signed-off-by: raver119 <raver119@gmail.com>

* fix bad databuffer size

Signed-off-by: raver119 <raver119@gmail.com>

* release primaryBuffer on replace

Signed-off-by: raver119 <raver119@gmail.com>

* higher timeout

Signed-off-by: raver119 <raver119@gmail.com>

* disable timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* dbCreateView now validates offset and length of a view

Signed-off-by: raver119 <raver119@gmail.com>

* additional validation for dbExpand

Signed-off-by: raver119 <raver119@gmail.com>

* restore timeout back again

Signed-off-by: raver119 <raver119@gmail.com>

* smaller distribution for rng test to prevent timeouts

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA DataBuffer::memcpy now copies to device all the time

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueDataBuffer now contains all required methods for interop

Signed-off-by: raver119 <raver119@gmail.com>

* some javadoc

Signed-off-by: raver119 <raver119@gmail.com>

* GC on failed allocations

Signed-off-by: raver119 <raver119@gmail.com>

* minoe memcpu tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more bitcast test

Signed-off-by: raver119 <raver119@gmail.com>

* - NDArray::deviceId() propagation
- special multi-threaded test for data locality checks

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer additional syncStream

Signed-off-by: raver119 <raver119@gmail.com>

* one ignored test

Signed-off-by: raver119 <raver119@gmail.com>

* skip host alloc for empty arrays

Signed-off-by: raver119 <raver119@gmail.com>

* ByteBuffer support is back

Signed-off-by: raver119 <raver119@gmail.com>

* DataBuffer::memcpy minor fix

Signed-off-by: raver119 <raver119@gmail.com>

* few minor prelu/bp tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* nullify-related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU fixes (#157)

Signed-off-by: Alex Black <blacka101@gmail.com>

* Build fixed

* Fix tests

* one more ByteBuffer signature restored

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* nd4j-jdbc-hsql profiles fix

Signed-off-by: raver119 <raver119@gmail.com>

* PReLU weight init fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* Small PReLU fix

Signed-off-by: Alex Black <blacka101@gmail.com>

* - INDArray.migrate() reactivated
- DataBuffer::setDeviceId(...) added
- InteropDataBuffer Z syncToDevice added for views

Signed-off-by: raver119 <raver119@gmail.com>

* missed file

Signed-off-by: raver119 <raver119@gmail.com>

* Small tweak

Signed-off-by: Alex Black <blacka101@gmail.com>

* cuda 10.2

Signed-off-by: raver119 <raver119@gmail.com>

* minor fix

Signed-off-by: raver119 <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
Co-authored-by: Alex Black <blacka101@gmail.com>
Co-authored-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
2020-01-04 13:27:50 +03:00
..
project Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
src String changes (#3) 2020-01-04 13:27:50 +03:00
.gitignore Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.scalafmt.conf Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
.travis.yml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
build.sbt [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
pom.xml Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
sbt-pom.xml Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00

README.md

ND4S: Scala bindings for ND4J

Join the chat at https://gitter.im/deeplearning4j/deeplearning4j

ND4S is open-source Scala bindings for ND4J. Released under an Apache 2.0 license.

Main Features

  • NDArray manipulation syntax sugar with safer type.
  • NDArray slicing syntax, similar with NumPy.

Installation

Install via Maven

ND4S is already included in official Maven repositories.

With IntelliJ, incorporation of ND4S is easy: just create a new Scala project, go to "Project Settings"/Libraries, add "From Maven...", and search for nd4s.

As an alternative, one may simply add the line below to build.sbt and re-build project.

val nd4jVersion = "1.0.0-alpha"

libraryDependencies += "org.nd4j" % "nd4j-native-platform" % nd4jVersion
libraryDependencies += "org.nd4j" %% "nd4s" % nd4jVersion

One may want to check our maven repository page and replace 1.0.0-alpha with the latest version.

No need for git-cloning & compiling!

Clone from the GitHub Repo

ND4S is actively developed. You can clone the repository, compile it, and reference it in your project.

Clone the repository:

$ git clone https://github.com/eclipse/deeplearning4j.git

Compile the project:

$ cd nd4s
$ sbt +publish-local

Try ND4S in REPL

The easiest way to play ND4S around is cloning this repository and run the following command.

$ cd nd4s
$ sbt test:console

It starts REPL with importing org.nd4s.Implicits._ and org.nd4j.linalg.factory.Nd4j automatically. It uses jblas backend at default.

scala> val arr = (1 to 9).asNDArray(3,3) 
arr: org.nd4j.linalg.api.ndarray.INDArray =
[[1.00,2.00,3.00]
 [4.00,5.00,6.00]
 [7.00,8.00,9.00]]

scala> val sub = arr(0->2,1->3)
sub: org.nd4j.linalg.api.ndarray.INDArray =
[[2.00,3.00]
 [5.00,6.00]]

CheatSheet(WIP)

ND4S syntax Equivalent NumPy syntax Result
Array(Array(1,2,3),Array(4,5,6)).toNDArray np.array(1, 2 , 3], [4, 5, 6) 1.0, 2.0, 3.0] [4.0, 5.0, 6.0
val arr = (1 to 9).asNDArray(3,3) arr = np.arange(1,10).reshape(3,3) 1.0, 2.0, 3.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0
arr(0,0) arr[0,0] 1.0
arr(0,->) arr[0,:] [1.0, 2.0, 3.0]
arr(--->) arr[...] 1.0, 2.0, 3.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0
arr(0 -> 3 by 2, ->) arr[0:3:2,:] 1.0, 2.0, 3.0] [7.0, 8.0, 9.0
arr(0 to 2 by 2, ->) arr[0:3:2,:] 1.0, 2.0, 3.0] [7.0, 8.0, 9.0
arr.filter(_ > 3) np.where(arr > 3, arr, 0) 0.0, 0.0, 0.0] [4.0, 5.0, 6.0] ,[7.0, 8.0, 9.0
arr.map(_ % 3) 1.0, 2.0, 0.0] [1.0, 2.0, 0.0] ,[1.0, 2.0, 0.0
arr.filterBit(_ < 4) 1.0, 1.0, 1.0] [0.0, 0.0, 0.0] ,[0.0, 0.0, 0.0
arr + arr arr + arr 2.0, 4.0, 6.0] [8.0, 10.0, 12.0] ,[14.0, 16.0, 18.0
arr * arr arr * arr 1.0, 4.0, 9.0] [16.0, 25.0, 36.0] ,[49.0, 64.0, 81.0
arr dot arr np.dot(arr, arr) 30.0, 36.0, 42.0] [66.0, 81.0, 96.0] ,[102.0, 126.0, 150.0
arr.sumT np.sum(arr) 45.0 //returns Double value
val comp = Array(1 + i, 1 + 2 * i).toNDArray comp = np.array([1 + 1j, 1 + 2j]) [1.0 + 1.0i ,1.0 + 2.0i]
comp.sumT np.sum(comp) 2.0 + 3.0i //returns IComplexNumber value
for(row <- arr.rowP if row.get(0) > 1) yield row*2 8.00,10.00,12.00] [14.00,16.00,18.00
val tensor = (1 to 8).asNDArray(2,2,2) tensor = np.arange(1,9).reshape(2,2,2) [1.00,2.00] [3.00,4.00 5.00,6.00] [7.00,8.00]
for(slice <- tensor.sliceP if slice.get(0) > 1) yield slice*2 [10.00,12.00][14.00,16.00]
arr(0 -> 3 by 2, ->) = 0 0.00,0.00,0.00] [4.00,5.00,6.00] [0.00,0.00,0.00