188 lines
7.6 KiB
Plaintext
188 lines
7.6 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <math/templatemath.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
__global__ static void pooling2dBPCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int poolingMode, const int extraParam0) {
|
|
|
|
// x: input [bS, iC, iH, iW]
|
|
// y: gradO [bS, iC, oH, oW]
|
|
// z: gradI [bS, iC, iH, iW] -> gradI is output in this function
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
const T* y = reinterpret_cast<const T*>(vy);
|
|
T* z = reinterpret_cast<T*>(vz);
|
|
|
|
Nd4jLong coord2, coord3;
|
|
__shared__ int rank, kHeff, kWeff, iH, iW, kProd;
|
|
__shared__ Nd4jLong yLen, *sharedMem;
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
yLen = shape::length(yShapeInfo);
|
|
rank = 4;
|
|
|
|
kHeff = kH + (kH - 1) * (dH - 1);
|
|
kWeff = kW + (kW - 1) * (dW - 1);
|
|
|
|
iH = xShapeInfo[3];
|
|
iW = xShapeInfo[4];
|
|
|
|
kProd = kH * kW;
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto yInd = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if(yInd >= yLen)
|
|
return;
|
|
|
|
auto coords = sharedMem + threadIdx.x * rank;
|
|
|
|
shape::index2coords(yInd, yShapeInfo, coords);
|
|
|
|
const auto yOffset = shape::getOffset(yShapeInfo, coords);
|
|
|
|
int hstart = coords[2] * sH - pH;
|
|
int wstart = coords[3] * sW - pW;
|
|
int hend = hstart + kHeff;
|
|
int wend = wstart + kWeff;
|
|
if(hstart < 0)
|
|
hstart += dH * ((-hstart + dH - 1) / dH);
|
|
if(wstart < 0)
|
|
wstart += dW * ((-wstart + dW - 1) / dW);
|
|
if(hend > iH)
|
|
hend -= dH * ((hend - iH + dH - 1) / dH);
|
|
if(wend > iW)
|
|
wend -= dW * ((wend - iW + dW - 1) / dW);
|
|
|
|
|
|
switch (poolingMode) {
|
|
|
|
/*** max ***/
|
|
case 0: {
|
|
coord2 = hstart;
|
|
coord3 = wstart;
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
for (coords[2] = hstart; coords[2] < hend; coords[2] += dH) {
|
|
for (coords[3] = wstart; coords[3] < wend; coords[3] += dW){
|
|
T val = x[shape::getOffset(xShapeInfo, coords)];
|
|
if (val > max) {
|
|
max = val;
|
|
coord2 = coords[2];
|
|
coord3 = coords[3];
|
|
}
|
|
}
|
|
}
|
|
coords[2] = coord2;
|
|
coords[3] = coord3;
|
|
auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
sd::math::atomics::nd4j_atomicAdd<T>(&z[zOffset], y[yOffset]);
|
|
//z[zOffset] += y[yOffset];
|
|
}
|
|
break;
|
|
|
|
/*** avg ***/
|
|
case 1: {
|
|
|
|
T val = y[yOffset];
|
|
|
|
if (extraParam0 == 0) //Exclude padding
|
|
val /= sd::math::nd4j_ceil<double,T>(static_cast<double>(hend - hstart) / static_cast<double>(dH)) * sd::math::nd4j_ceil<double,T>(static_cast<double>(wend - wstart) / static_cast<double>(dW)); //Accounts for dilation
|
|
else if (extraParam0 == 1) //Include padding
|
|
val /= kProd;
|
|
|
|
for (coords[2] = hstart; coords[2] < hend; coords[2] += dH)
|
|
for (coords[3] = wstart; coords[3] < wend; coords[3] += dW)
|
|
sd::math::atomics::nd4j_atomicAdd<T>(&z[shape::getOffset(zShapeInfo, coords)], val);
|
|
}
|
|
break;
|
|
|
|
/*** pnorm ***/
|
|
case 2: {
|
|
|
|
T sum = static_cast<T>(0.);
|
|
T val = y[yOffset];
|
|
|
|
for (coords[2] = hstart; coords[2] < hend; coords[2] += dH)
|
|
for (coords[3] = wstart; coords[3] < wend; coords[3] += dW)
|
|
sum += sd::math::nd4j_pow<T,T,T>(sd::math::nd4j_abs<T>(x[shape::getOffset(xShapeInfo, coords)]), extraParam0);
|
|
|
|
val *= sd::math::nd4j_pow<T,T,T>(sum, ((T)1.f - extraParam0) / extraParam0);
|
|
|
|
for (coords[2] = hstart; coords[2] < hend; coords[2] += dH) {
|
|
for (coords[3] = wstart; coords[3] < wend; coords[3] += dW) {
|
|
const auto xOffset = shape::getOffset(xShapeInfo, coords);
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
sd::math::atomics::nd4j_atomicAdd<T>(&z[zOffset], val * sd::math::nd4j_pow<T,T,T>(sd::math::nd4j_abs<T>(x[xOffset]), extraParam0 - 1.f) * sd::math::nd4j_sgn<T,T>(x[xOffset]));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void pooling2dBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const int poolingMode, const int extraParam0) {
|
|
|
|
pooling2dBPCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, poolingMode, extraParam0);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void ConvolutionUtils::pooling2dBP(sd::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int poolingMode, const int extraParam0) {
|
|
|
|
// initial zeroing of gradI
|
|
gradI.nullify();
|
|
|
|
PointersManager manager(block.launchContext(), "pooling2dBP");
|
|
|
|
const int threadsPerBlock = 256;
|
|
const int blocksPerGrid = (gradO.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = gradO.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
NDArray::prepareSpecialUse({&gradI}, {&input, &gradO});
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), pooling2dBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), gradO.specialBuffer(), gradO.specialShapeInfo(), gradI.specialBuffer(), gradI.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, poolingMode, extraParam0), NUMERIC_TYPES);
|
|
NDArray::registerSpecialUse({&gradI}, {&input, &gradO});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
}
|
|
} |