Samuel Audet 029b84e2b7
Development updates (#9053)
* RL4J: Add generic update rule (#502)

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

* Shyrma reduce (#481)

* - start working on improving of cpu legacy code for reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on improving legacy loops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - still working on improving reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on improving reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing speed run of new reduce op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - working on improvement of default loop for reduce op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - update signatures of stuff which calls reduce ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - make corrections in cuda reduce kernels

Signed-off-by: Yurii <iuriish@yahoo.com>

* - change loop for default case in broadcast legacy ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - comment some shape stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - comment unnecessary prints in RNGtests

Signed-off-by: Yurii <iuriish@yahoo.com>

* - finish to resolve conflicts after master has been merged

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of some compilation mistakes of cuda stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - minor changes

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further search for bug causing crash on java test

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add scalar case in reduce_ ... exec stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - minor corrections in NAtiveOps.cu

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add switch to scalar case execReduceXD functions

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add support for vectors old shape in ConstantShapeHelper::createShapeInfoWithNoUnitiesForReduce

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct cuda mirrorPad

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add support for vectors old shape in cuda createShapeInfoWithNoUnitiesForReduce

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>

* Add support for CUDA 11.0 (#492)

* Add support for CUDA 11.0

* libnd4j tweaks for CUDA 11

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* bindings update, again?

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* * Update versions of JavaCPP Presets for FFmpeg, OpenBLAS, and NumPy

* update API to match CUDA 8

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* * Update version of JavaCPP Presets for CPython

* C++ updated for cuDNN 8.0

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* 128-bit alignment for workspaces

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* change seed in 1 test

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fix dependecy duplication in python4j-parent pom

* Fix group id for in python4j-numpy

* few tests tweaked

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Remove macosx-x86_64-gpu from nd4j-tests-tensorflow

* few minor tweaks for IndexReduce

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one test removed

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: raver119@gmail.com <raver119@gmail.com>
Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>

* RL4J: Add SyncTrainer and AgentLearnerBuilder for a few algorithms (#504)

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

Co-authored-by: Alexandre Boulanger <44292157+aboulang2002@users.noreply.github.com>
Co-authored-by: Yurii Shyrma <iuriish@yahoo.com>
Co-authored-by: raver119 <raver119@gmail.com>
Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>
2020-07-26 21:59:27 +09:00

89 lines
4.0 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/helpers.h>
#include <ops/declarable/helpers/hamming.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename X, typename Z>
static _CUDA_G void _hammingKernel(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, void *reductionBuffer, Nd4jLong length) {
auto x = reinterpret_cast<const X*>(vx);
auto y = reinterpret_cast<const X*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Nd4jLong shared[CUDA_BLOCK_SIZE];
// we want to nullify temporary memory before accumulating intermediate results
shared[threadIdx.x] = 0;
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
auto _x = static_cast<unsigned long long>(x[shape::getIndexOffset(e, xShapeInfo)]);
auto _y = static_cast<unsigned long long>(y[shape::getIndexOffset(e, yShapeInfo)]);
// we save intermediate result into shared memory
shared[threadIdx.x] += __popcll(_x ^ _y);
}
__syncthreads();
// now we accumulate values
auto numItems = sd::math::nd4j_min<Nd4jLong>(blockDim.x, length);
auto floorPow2 = numItems;
if (floorPow2 & (floorPow2 - 1)) {
while (floorPow2 & (floorPow2 - 1))
floorPow2 &= floorPow2 - 1;
if (threadIdx.x >= floorPow2)
shared[threadIdx.x - floorPow2] = shared[threadIdx.x - floorPow2] + shared[threadIdx.x];
__syncthreads();
}
__syncthreads();
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
if (threadIdx.x < activeThreads && threadIdx.x + activeThreads < numItems)
shared[threadIdx.x] = shared[threadIdx.x] + shared[threadIdx.x + activeThreads];
__syncthreads();
}
__syncthreads();
// FIXME: do we really want atomicAdd on global memory here
// and store them to output
if (threadIdx.x == 0 && shared[0] > 0)
sd::math::atomics::nd4j_atomicAdd<Z>(&z[0], static_cast<Z>(shared[threadIdx.x]));
}
template <typename X, typename Z>
static void _hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &z) {
_hammingKernel<X, Z><<<256, CUDA_BLOCK_SIZE, 1024, *context->getCudaStream()>>>(x.specialBuffer(), x.specialShapeInfo(), y.specialBuffer(), y.specialShapeInfo(), z.specialBuffer(), nullptr, x.lengthOf());
}
void hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &output) {
NDArray::prepareSpecialUse({&output}, {&x, &y});
BUILD_DOUBLE_SELECTOR(x.dataType(), output.dataType(), _hamming, (context, x, y, output), INTEGER_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({&output}, {&x, &y});
}
}
}
}