* RL4J: Add generic update rule (#502) Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com> * Shyrma reduce (#481) * - start working on improving of cpu legacy code for reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further work on improving legacy loops Signed-off-by: Yurii <iuriish@yahoo.com> * - still working on improving reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further work on improving reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - testing speed run of new reduce op Signed-off-by: Yurii <iuriish@yahoo.com> * - working on improvement of default loop for reduce op Signed-off-by: Yurii <iuriish@yahoo.com> * - update signatures of stuff which calls reduce ops Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections in cuda reduce kernels Signed-off-by: Yurii <iuriish@yahoo.com> * - change loop for default case in broadcast legacy ops Signed-off-by: Yurii <iuriish@yahoo.com> * - comment some shape stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - comment unnecessary prints in RNGtests Signed-off-by: Yurii <iuriish@yahoo.com> * - finish to resolve conflicts after master has been merged Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of some compilation mistakes of cuda stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - minor changes Signed-off-by: Yurii <iuriish@yahoo.com> * - further search for bug causing crash on java test Signed-off-by: Yurii <iuriish@yahoo.com> * - add scalar case in reduce_ ... exec stuff Signed-off-by: Yurii <iuriish@yahoo.com> * - minor corrections in NAtiveOps.cu Signed-off-by: Yurii <iuriish@yahoo.com> * - add switch to scalar case execReduceXD functions Signed-off-by: Yurii <iuriish@yahoo.com> * - add support for vectors old shape in ConstantShapeHelper::createShapeInfoWithNoUnitiesForReduce Signed-off-by: Yurii <iuriish@yahoo.com> * - correct cuda mirrorPad Signed-off-by: Yurii <iuriish@yahoo.com> * - add support for vectors old shape in cuda createShapeInfoWithNoUnitiesForReduce Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com> * Add support for CUDA 11.0 (#492) * Add support for CUDA 11.0 * libnd4j tweaks for CUDA 11 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * bindings update, again? Signed-off-by: raver119@gmail.com <raver119@gmail.com> * * Update versions of JavaCPP Presets for FFmpeg, OpenBLAS, and NumPy * update API to match CUDA 8 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * * Update version of JavaCPP Presets for CPython * C++ updated for cuDNN 8.0 Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * 128-bit alignment for workspaces Signed-off-by: raver119@gmail.com <raver119@gmail.com> * change seed in 1 test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fix dependecy duplication in python4j-parent pom * Fix group id for in python4j-numpy * few tests tweaked Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Remove macosx-x86_64-gpu from nd4j-tests-tensorflow * few minor tweaks for IndexReduce Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one test removed Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com> * RL4J: Add SyncTrainer and AgentLearnerBuilder for a few algorithms (#504) Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com> Co-authored-by: Alexandre Boulanger <44292157+aboulang2002@users.noreply.github.com> Co-authored-by: Yurii Shyrma <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com> Co-authored-by: Serhii Shepel <9946053+sshepel@users.noreply.github.com>
89 lines
4.0 KiB
Plaintext
89 lines
4.0 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/helpers.h>
|
|
#include <ops/declarable/helpers/hamming.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
template <typename X, typename Z>
|
|
static _CUDA_G void _hammingKernel(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, void *reductionBuffer, Nd4jLong length) {
|
|
auto x = reinterpret_cast<const X*>(vx);
|
|
auto y = reinterpret_cast<const X*>(vy);
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ Nd4jLong shared[CUDA_BLOCK_SIZE];
|
|
|
|
// we want to nullify temporary memory before accumulating intermediate results
|
|
shared[threadIdx.x] = 0;
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
|
|
auto _x = static_cast<unsigned long long>(x[shape::getIndexOffset(e, xShapeInfo)]);
|
|
auto _y = static_cast<unsigned long long>(y[shape::getIndexOffset(e, yShapeInfo)]);
|
|
|
|
// we save intermediate result into shared memory
|
|
shared[threadIdx.x] += __popcll(_x ^ _y);
|
|
}
|
|
__syncthreads();
|
|
|
|
// now we accumulate values
|
|
auto numItems = sd::math::nd4j_min<Nd4jLong>(blockDim.x, length);
|
|
auto floorPow2 = numItems;
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
while (floorPow2 & (floorPow2 - 1))
|
|
floorPow2 &= floorPow2 - 1;
|
|
|
|
if (threadIdx.x >= floorPow2)
|
|
shared[threadIdx.x - floorPow2] = shared[threadIdx.x - floorPow2] + shared[threadIdx.x];
|
|
|
|
__syncthreads();
|
|
}
|
|
__syncthreads();
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
|
if (threadIdx.x < activeThreads && threadIdx.x + activeThreads < numItems)
|
|
shared[threadIdx.x] = shared[threadIdx.x] + shared[threadIdx.x + activeThreads];
|
|
|
|
__syncthreads();
|
|
}
|
|
__syncthreads();
|
|
|
|
// FIXME: do we really want atomicAdd on global memory here
|
|
// and store them to output
|
|
if (threadIdx.x == 0 && shared[0] > 0)
|
|
sd::math::atomics::nd4j_atomicAdd<Z>(&z[0], static_cast<Z>(shared[threadIdx.x]));
|
|
}
|
|
|
|
template <typename X, typename Z>
|
|
static void _hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &z) {
|
|
_hammingKernel<X, Z><<<256, CUDA_BLOCK_SIZE, 1024, *context->getCudaStream()>>>(x.specialBuffer(), x.specialShapeInfo(), y.specialBuffer(), y.specialShapeInfo(), z.specialBuffer(), nullptr, x.lengthOf());
|
|
}
|
|
|
|
void hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &output) {
|
|
NDArray::prepareSpecialUse({&output}, {&x, &y});
|
|
BUILD_DOUBLE_SELECTOR(x.dataType(), output.dataType(), _hamming, (context, x, y, output), INTEGER_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({&output}, {&x, &y});
|
|
}
|
|
}
|
|
}
|
|
} |