* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
742 lines
31 KiB
C++
742 lines
31 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author saudet
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <array/NDArrayFactory.h>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, NDArray* z,
|
|
const float epsilon, const bool isNCHW) {
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
|
|
|
|
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
// mean -> 1D [c]
|
|
// variance -> 1D [c]
|
|
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
|
|
// z(output) - same shape as x
|
|
|
|
const int xRank = x->rankOf();
|
|
|
|
// input type
|
|
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
|
|
|
// indicate whether gamma or/and beta are given
|
|
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
|
|
if (weights != nullptr)
|
|
flags |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
dnnl::memory::dims dims;
|
|
dnnl::memory::format_tag format;
|
|
|
|
const int indHW = isNCHW ? 2 : 1;
|
|
const int bS = x->sizeAt(0);
|
|
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
|
|
|
|
int iD, iH, iW;
|
|
|
|
if(xRank == 2) {
|
|
dims = {bS, iC};
|
|
format = dnnl::memory::format_tag::nc;
|
|
}
|
|
else if(xRank == 4) {
|
|
iH = x->sizeAt(indHW);
|
|
iW = x->sizeAt(indHW + 1);
|
|
dims = {bS, iC, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
}
|
|
else { // xRank = 5
|
|
iD = x->sizeAt(indHW);
|
|
iH = x->sizeAt(indHW + 1);
|
|
iW = x->sizeAt(indHW + 2);
|
|
dims = {bS, iC, iD, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
}
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// x
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(x, x_user_md);
|
|
// z, output
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(z, z_user_md);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// batchnorm forward description
|
|
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory and check whether reorder is required
|
|
|
|
// x
|
|
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
// z
|
|
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer());
|
|
const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc();
|
|
auto z_mkl_mem = zReorder ? dnnl::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem;
|
|
if (zReorder)
|
|
dnnl::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem);
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
// mean
|
|
auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
|
|
args[DNNL_ARG_MEAN] = mean_mkl_mem;
|
|
|
|
// variance
|
|
auto var_mkl_mem = dnnl::memory(op_ff_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
|
|
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
|
|
|
|
// gamma and beta (and their gradients) if they are present
|
|
if(weights != nullptr) {
|
|
|
|
auto w_mkl_mem = dnnl::memory(op_ff_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
}
|
|
|
|
// run calculations
|
|
dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (zReorder)
|
|
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights,
|
|
NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) {
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
|
|
|
|
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
// mean -> 1D [c]
|
|
// variance -> 1D [c]
|
|
// dLdO - same shape as x
|
|
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
|
|
// dLdI - same shape as x
|
|
// dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta
|
|
|
|
const int xRank = x->rankOf();
|
|
|
|
// input type
|
|
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
|
|
|
// indicate whether gamma or/and beta are given
|
|
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
|
|
if (weights != nullptr)
|
|
flags |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
dnnl::memory::dims dims;
|
|
dnnl::memory::format_tag format;
|
|
|
|
const int indHW = isNCHW ? 2 : 1;
|
|
const int bS = x->sizeAt(0);
|
|
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
|
|
|
|
int iD, iH, iW;
|
|
|
|
if(xRank == 2) {
|
|
dims = {bS, iC};
|
|
format = dnnl::memory::format_tag::nc;
|
|
}
|
|
else if(xRank == 4) {
|
|
iH = x->sizeAt(indHW);
|
|
iW = x->sizeAt(indHW + 1);
|
|
dims = {bS, iC, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
}
|
|
else { // xRank = 5
|
|
iD = x->sizeAt(indHW);
|
|
iH = x->sizeAt(indHW + 1);
|
|
iW = x->sizeAt(indHW + 2);
|
|
dims = {bS, iC, iD, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
}
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// x
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(x, x_user_md);
|
|
|
|
// dLdO
|
|
dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(&dLdO, dLdO_user_md);
|
|
|
|
// dLdI
|
|
dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(dLdI, dLdI_user_md);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// batchnorm forward description
|
|
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// batchnorm backprop description
|
|
dnnl::batch_normalization_backward::desc op_bp_desc(dnnl::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory and check whether reorder is required
|
|
|
|
// x
|
|
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
// dLdO
|
|
mkldnnUtils::loadDataToMklStream(&dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
|
|
|
|
// mean
|
|
auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
|
|
args[DNNL_ARG_MEAN] = mean_mkl_mem;
|
|
|
|
// variance
|
|
auto var_mkl_mem = dnnl::memory(op_bp_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
|
|
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
|
|
|
|
// dLdI
|
|
auto dLdI_user_mem = dnnl::memory(dLdI_user_md, engine, dLdI->buffer());
|
|
const bool dLdIReorder = op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc();
|
|
auto dLdI_mkl_mem = dLdIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdI_user_mem;
|
|
args[DNNL_ARG_DIFF_SRC] = dLdI_mkl_mem;
|
|
|
|
// gamma and beta (and their gradients) if they are present
|
|
if(weights != nullptr) {
|
|
|
|
auto w_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
auto dLdW_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->buffer());
|
|
args[DNNL_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem;
|
|
}
|
|
|
|
// run calculations
|
|
dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (dLdIReorder)
|
|
dnnl::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(dLdI_mkl_mem.map_data<float>(),8);
|
|
|
|
// notations:
|
|
// f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output
|
|
// g = dLdO
|
|
// stdInv = 1 / (v + eps)^0.5
|
|
// N - batch size (product of spatial dimensions)
|
|
|
|
// formula for full derivative with respect to input (x)
|
|
// dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)
|
|
|
|
// !!! MKL CALCULATES ONLY FIRST TERM dfdx, SO WE SHOULD CALCULATE TERM (dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)) BY OURSELF !!!
|
|
|
|
// dfdm = -gamma*stdInv*g_sum;
|
|
// dmdx = 1/N;
|
|
// dvdx = 2 * (x - m) / N
|
|
// dvdm = -2 * [(x - m)]_sum / N
|
|
// dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience
|
|
|
|
// finally:
|
|
// dLdI = dfdm / N + (2/N) * dfdv * (dvdm/2 + (x - m))
|
|
// dLdI = gamma * ( stdInv * -g_sum/N + (2/N) * dfdv * (dvdm/2 + (x - m)) )
|
|
|
|
std::vector<int> axes = isNCHW ? std::vector<int>{1} : std::vector<int>{xRank - 1};
|
|
const auto excludedAxes = ShapeUtils::evalDimsToExclude(x->rankOf(), axes);
|
|
|
|
// inversed batch size 1 / N
|
|
const auto Ninv = 1.f * mean->lengthOf() / x->lengthOf();
|
|
|
|
// x - mean
|
|
NDArray xMinusMean(x); // empty array with same shape as x
|
|
const_cast<NDArray*>(x)->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean);
|
|
|
|
// stdInv
|
|
NDArray stdInv = *variance + epsilon;
|
|
stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon)
|
|
stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5
|
|
|
|
// dfdm / N
|
|
auto dfdm = dLdO.reduceAlongDimension(sd::reduce::Sum, excludedAxes);
|
|
dfdm *= stdInv;
|
|
dfdm *= -Ninv;
|
|
|
|
// dvdm / 2
|
|
NDArray dvdm(mean); // empty array with same shape as mean
|
|
xMinusMean.reduceAlongDimension(sd::reduce::Sum, dvdm, excludedAxes);
|
|
dvdm *= -Ninv;
|
|
|
|
// (2/N)*dfdv
|
|
NDArray dfdv(variance); // empty array with same shape as variance
|
|
(xMinusMean * dLdO).reduceAlongDimension(sd::reduce::Sum, dfdv, excludedAxes);
|
|
dfdv *= stdInv*stdInv*stdInv;
|
|
dfdv *= -Ninv;
|
|
|
|
// dvdm/2 + (x - m)
|
|
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dvdm, xMinusMean);
|
|
// dfdv * (dvdm/2 + (x - m))
|
|
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, dfdv, xMinusMean);
|
|
// add dfdm / N
|
|
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dfdm, xMinusMean);
|
|
// * gamma
|
|
auto gamma = (*weights)({0,1, 0,0});
|
|
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, gamma, xMinusMean);
|
|
|
|
*dLdI += xMinusMean;
|
|
}
|
|
|
|
PLATFORM_IMPL(batchnorm, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
auto mean = INPUT_VARIABLE(1); // [c]
|
|
auto variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // same shape as input
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const double epsilon = T_ARG(0);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
|
|
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
|
|
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma != nullptr)
|
|
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta != nullptr)
|
|
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same (except dLdO)
|
|
for(int i = 1; i < block.width() - 1; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !");
|
|
|
|
|
|
NDArray *weights = nullptr;
|
|
|
|
if(applyScale || applyOffset) {
|
|
|
|
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
|
|
if(applyScale)
|
|
(*weights)({0,1, 0,0}).assign(gamma);
|
|
else
|
|
(*weights)({0,1, 0,0}).assign(1);
|
|
if(applyOffset)
|
|
(*weights)({1,2, 0,0}).assign(beta);
|
|
else
|
|
(*weights)({1,2, 0,0}).assign(0);
|
|
}
|
|
|
|
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
|
|
|
|
batchnormMKLDNN(input, mean, variance, weights, output, epsilon, isNCHW);
|
|
|
|
delete weights;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(batchnorm, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
auto mean = INPUT_VARIABLE(1); // [c]
|
|
auto variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // same shape as input
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
|
|
|
|
DataType inputType = input->dataType();
|
|
DataType meanType = mean->dataType();
|
|
DataType varType = variance->dataType();
|
|
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
|
|
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
|
|
DataType outType = output->dataType();
|
|
|
|
const int inRank = input->rankOf();
|
|
|
|
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
|
|
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
|
|
gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// PLATFORM_IMPL(batchnorm) {
|
|
|
|
// auto input = INPUT_VARIABLE(0);
|
|
// auto mean = INPUT_VARIABLE(1);
|
|
// auto variance = INPUT_VARIABLE(2);
|
|
// NDArray *gamma = nullptr;
|
|
// NDArray *beta = nullptr;
|
|
|
|
// auto output = OUTPUT_VARIABLE(0);
|
|
|
|
// const bool applyScale = (bool) INT_ARG(0);
|
|
// const bool applyOffset = (bool) INT_ARG(1);
|
|
// const double epsilon = T_ARG(0);
|
|
|
|
// if (applyScale)
|
|
// gamma = INPUT_VARIABLE(3);
|
|
// if (applyOffset)
|
|
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
|
|
|
|
// std::vector<int> axes;
|
|
// if (block.numI() > 2)
|
|
// for (int i = 2; i < block.numI(); ++i)
|
|
// axes.push_back(INT_ARG(i));
|
|
// else
|
|
// axes.push_back(input->rankOf() - 1);
|
|
|
|
// std::vector<Nd4jLong> shape({2, mean->lengthOf()});
|
|
// NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
|
|
// weights({0, 1, 0, 0}).assign(1.0f);
|
|
// weights({1, 2, 0, 0}).assign(0.0f);
|
|
|
|
// mkldnn_memory_desc_t empty;
|
|
// dnnl::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty);
|
|
|
|
// auto flag = dnnl::normalization_flags::use_global_stats;
|
|
// if (applyScale || applyOffset)
|
|
// flag |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
// mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
|
|
// &batchnorm_src_md, nullptr, &batchnorm_dst_md,
|
|
// &user_src_md, nullptr, &user_dst_md, axes[0]);
|
|
|
|
// auto batchnorm_desc = dnnl::batch_normalization_forward::desc(dnnl::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag);
|
|
|
|
// auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
// dnnl::stream stream(engine);
|
|
// auto batchnorm_prim_desc = dnnl::batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
|
|
// auto user_src_memory = dnnl::memory(user_src_md, engine, input->buffer());
|
|
// auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
|
|
// auto batchnorm_mean_memory = dnnl::memory(batchnorm_prim_desc.mean_desc(), engine,
|
|
// mean->buffer());
|
|
// auto batchnorm_variance_memory = dnnl::memory(batchnorm_prim_desc.variance_desc(), engine,
|
|
// variance->buffer());
|
|
// auto batchnorm_src_memory = user_src_memory;
|
|
// dnnl::memory m(batchnorm_src_md, engine);
|
|
// if (m.get_desc() != user_src_memory.get_desc()) {
|
|
// batchnorm_src_memory = dnnl::memory(batchnorm_src_md, engine);
|
|
// dnnl::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
|
|
// batchnorm_src_memory);
|
|
// }
|
|
// auto batchnorm_dst_memory = user_dst_memory;
|
|
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
// batchnorm_dst_memory = dnnl::memory(batchnorm_prim_desc.dst_desc(), engine);
|
|
// }
|
|
// if (applyScale || applyOffset) {
|
|
// if (gamma != nullptr) {
|
|
// weights({0, 1, 0, 0}).assign(gamma);
|
|
// }
|
|
// if (beta != nullptr) {
|
|
// weights({1, 2, 0, 0}).assign(beta);
|
|
// }
|
|
|
|
// auto batchnorm_weights_memory = dnnl::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
|
|
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
|
|
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
|
|
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
|
|
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
|
|
// {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
|
|
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
|
|
// } else {
|
|
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
|
|
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
|
|
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
|
|
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
|
|
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
|
|
// }
|
|
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
// dnnl::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
|
|
// user_dst_memory);
|
|
// }
|
|
// stream.wait();
|
|
|
|
// return Status::OK();
|
|
// }
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// PLATFORM_CHECK(batchnorm) {
|
|
// // we don't want to use mkldnn if cpu doesn't support avx/avx2
|
|
// if (::optimalLevel() < 2)
|
|
// return false;
|
|
|
|
// auto input = INPUT_VARIABLE(0);
|
|
// auto mean = INPUT_VARIABLE(1);
|
|
// auto variance = INPUT_VARIABLE(2);
|
|
// NDArray *gamma = nullptr;
|
|
// NDArray *beta = nullptr;
|
|
|
|
// auto output = OUTPUT_VARIABLE(0);
|
|
|
|
// const bool applyScale = (bool) INT_ARG(0);
|
|
// const bool applyOffset = (bool) INT_ARG(1);
|
|
// const double epsilon = T_ARG(0);
|
|
|
|
// if (applyScale)
|
|
// gamma = INPUT_VARIABLE(3);
|
|
// if (applyOffset)
|
|
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
|
|
|
|
// std::vector<int> axes;
|
|
// if (block.numI() > 2)
|
|
// for (int i = 2; i < block.numI(); ++i)
|
|
// axes.push_back(INT_ARG(i));
|
|
// else
|
|
// axes.push_back(input->rankOf() - 1);
|
|
|
|
// return block.isUseMKLDNN() &&
|
|
// sd::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
|
|
// axes.size() == 1;
|
|
// }
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(batchnorm_bp, ENGINE_CPU) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
NDArray* mean = INPUT_VARIABLE(1); // [c]
|
|
NDArray* variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // same as input
|
|
|
|
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
|
|
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
|
|
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdG = nullptr; // [c]
|
|
NDArray* dLdB = nullptr; // [c]
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const float epsilon = T_ARG(0);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(3);
|
|
dLdG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
|
|
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
|
|
REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str());
|
|
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma != nullptr)
|
|
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta != nullptr)
|
|
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same
|
|
for(int i = 1; i < block.width() - 1; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !");
|
|
|
|
|
|
NDArray *weights = nullptr, *dLdW = nullptr;
|
|
|
|
if(applyScale || applyOffset) {
|
|
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
if(applyScale)
|
|
(*weights)({0,1, 0,0}).assign(gamma);
|
|
else
|
|
(*weights)({0,1, 0,0}).assign(1);
|
|
if(applyOffset)
|
|
(*weights)({1,2, 0,0}).assign(beta);
|
|
else
|
|
(*weights)({1,2, 0,0}).assign(0);
|
|
}
|
|
|
|
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
|
|
|
|
if (shape::strideDescendingCAscendingF(dLdO->shapeInfo()))
|
|
batchnormBackPropMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW);
|
|
else
|
|
batchnormBackPropMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW);
|
|
|
|
*dLdM = 0;
|
|
*dLdV = 0;
|
|
|
|
if(applyScale || applyOffset) {
|
|
if(applyScale)
|
|
dLdG->assign((*dLdW)({0,1, 0,0}));
|
|
if(applyOffset)
|
|
dLdB->assign((*dLdW)({1,2, 0,0}));
|
|
|
|
delete weights;
|
|
delete dLdW;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(batchnorm_bp, ENGINE_CPU) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
|
|
NDArray* mean = INPUT_VARIABLE(1); // [c]
|
|
NDArray* variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdO = INPUT_VARIABLE(3); // same as input
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
|
|
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
|
|
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdG = nullptr; // [c]
|
|
NDArray* dLdB = nullptr; // [c]
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(4);
|
|
dLdG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(4 + (int)applyScale);
|
|
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
|
|
|
|
DataType inputType = input->dataType();
|
|
DataType meanType = mean->dataType();
|
|
DataType varType = variance->dataType();
|
|
DataType dLdOType = dLdO->dataType();
|
|
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
|
|
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
|
|
|
|
DataType dLdIType = dLdI->dataType();
|
|
DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32;
|
|
DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32;
|
|
|
|
const int inRank = input->rankOf();
|
|
|
|
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
|
|
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
|
|
dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 &&
|
|
dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |