* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
449 lines
19 KiB
C++
449 lines
19 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 16.10.2017.
|
|
//
|
|
|
|
#include <ops/declarable/LegacyRandomOp.h>
|
|
#include <helpers/RandomLauncher.h>
|
|
#include <legacy/NativeOpExecutioner.h>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <graph/Status.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
LegacyRandomOp::LegacyRandomOp() : LegacyOp::LegacyOp(1) {
|
|
// just a no-op
|
|
}
|
|
|
|
LegacyRandomOp::LegacyRandomOp(int opNum) : LegacyOp::LegacyOp(1, opNum) {
|
|
// just a no-op
|
|
}
|
|
|
|
LegacyOp* LegacyRandomOp::clone() {
|
|
return new LegacyRandomOp(this->_opNum);
|
|
}
|
|
|
|
template <typename T>
|
|
Nd4jStatus LegacyRandomOp::validateAndExecute_(Context &block) {
|
|
auto input = INPUT_VARIABLE(0);
|
|
|
|
int opNum = block.opNum() < 0 ? this->_opNum : block.opNum();
|
|
|
|
/*
|
|
(0, randomOps::UniformDistribution) ,\
|
|
(1, randomOps::DropOut) ,\
|
|
(2, randomOps::DropOutInverted) ,\
|
|
(3, randomOps::ProbablisticMerge) ,\
|
|
(4, randomOps::Linspace) ,\
|
|
(5, randomOps::Choice) ,\
|
|
(6, randomOps::GaussianDistribution) ,\
|
|
(7, randomOps::BernoulliDistribution) ,\
|
|
(8, randomOps::BinomialDistribution),\
|
|
(9, randomOps::BinomialDistributionEx),\
|
|
(10, randomOps::LogNormalDistribution) ,\
|
|
(11, randomOps::TruncatedNormalDistribution) ,\
|
|
(12, randomOps::AlphaDropOut)
|
|
*/
|
|
switch(opNum) {
|
|
case sd::random::UniformDistribution: {
|
|
// uniform distribution
|
|
T from, to;
|
|
if (block.width() > 2) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "Uniform: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "Uniform: Third argument must be scalar");
|
|
|
|
from = arg1->e<T>(0);
|
|
to = arg2->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 2) {
|
|
from = T_ARG(0);
|
|
to = T_ARG(1);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "Uniform requires either TArgs or 3 arguments to be present");
|
|
}
|
|
|
|
auto z = OUTPUT_VARIABLE(0); //NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillUniform(block.launchContext(), block.randomGenerator(), z, from, to);
|
|
|
|
// FIXME:
|
|
//OVERWRITE_RESULT(z);
|
|
}
|
|
break;
|
|
case sd::random::DropOut: {
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
T prob;
|
|
if (block.width() > 1) {
|
|
auto arg = INPUT_VARIABLE(1);
|
|
REQUIRE_TRUE(arg->isScalar(), 0, "DropOut: Second argument must be scalar");
|
|
|
|
prob = arg->e<T>(0);
|
|
} else if (block.getTArguments()->size() > 0) {
|
|
prob = T_ARG(0);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "DropOut requires either TArgs or second argument to be present");
|
|
}
|
|
|
|
if (!block.isInplace())
|
|
z->assign(input);
|
|
|
|
RandomLauncher::applyDropOut(block.launchContext(), block.randomGenerator(), z, prob);
|
|
}
|
|
break;
|
|
case sd::random::DropOutInverted: {
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
sd::ops::dropout op;
|
|
return op.execute(&block);
|
|
}
|
|
break;
|
|
case sd::random::GaussianDistribution: {
|
|
// gaussian distribution
|
|
T mean, stdev;
|
|
if (block.width() > 2) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "Gaussian: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "Gaussian: Third argument must be scalar");
|
|
|
|
mean = arg1->e<T>(0);
|
|
stdev = arg2->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 2) {
|
|
mean = T_ARG(0);
|
|
stdev = T_ARG(1);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "Gaussian requires either TArgs or 3 arguments to be present");
|
|
}
|
|
|
|
REQUIRE_TRUE(input->isVector(), 0, "Gaussian requires pure shape as first argument");
|
|
|
|
std::vector<Nd4jLong> shape(input->lengthOf());
|
|
for (int e = 0; e < input->lengthOf(); e++)
|
|
shape[e] = input->e<Nd4jLong>(e);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillGaussian(block.launchContext(), block.randomGenerator(), z, mean, stdev);
|
|
|
|
// FIXME: !!
|
|
//OVERWRITE_RESULT(z);
|
|
}
|
|
break;
|
|
case sd::random::BernoulliDistribution: {
|
|
// bernoulli distribution
|
|
T prob;
|
|
if (block.width() > 1) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "Bernoulli: Second argument must be scalar");
|
|
|
|
prob = arg1->e<T>(0);
|
|
} else if (block.getTArguments()->size() > 0) {
|
|
prob = T_ARG(0);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "Bernoulli requires either 1 TArg or 2 arguments to be present");
|
|
}
|
|
|
|
REQUIRE_TRUE(input->isVector(), 0, "Bernoulli requires pure shape as first argument");
|
|
|
|
std::vector<Nd4jLong> shape(input->lengthOf());
|
|
for (int e = 0; e < input->lengthOf(); e++)
|
|
shape[e] = input->e<Nd4jLong>(e);
|
|
|
|
auto z = OUTPUT_VARIABLE(0); // NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillBernoulli(block.launchContext(), block.randomGenerator(), z, prob);
|
|
|
|
// FIXME:
|
|
//OVERWRITE_RESULT(z);
|
|
}
|
|
break;
|
|
case sd::random::BinomialDistributionEx: {
|
|
// BinomialEx distribution
|
|
T prob;
|
|
int trials;
|
|
if (block.width() > 2) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "Binomial: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "Binomial: Third argument must be scalar");
|
|
|
|
trials = arg1->e<int>(0);
|
|
prob = arg2->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 1 && block.getIArguments()->size() == 1) {
|
|
trials = INT_ARG(0);
|
|
prob = T_ARG(0);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "Binomial requires either TArgs/IArgs or 3 arguments to be present");
|
|
}
|
|
|
|
REQUIRE_TRUE(input->isVector(), 0, "Binomial requires pure shape as first argument");
|
|
|
|
std::vector<Nd4jLong> shape(input->lengthOf());
|
|
for (int e = 0; e < input->lengthOf(); e++)
|
|
shape[e] = input->e<Nd4jLong>(e);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillBinomial(block.launchContext(), block.randomGenerator(), z, trials, prob);
|
|
|
|
// FIXME: !!!
|
|
//OVERWRITE_RESULT(z);
|
|
}
|
|
break;
|
|
case sd::random::LogNormalDistribution: {
|
|
// lognorm distribution
|
|
T mean, stdev;
|
|
if (block.width() > 2) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "LogNormal: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "LogNormal: Third argument must be scalar");
|
|
|
|
mean = arg1->e<T>(0);
|
|
stdev = arg2->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 2) {
|
|
mean = T_ARG(0);
|
|
stdev = T_ARG(1);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "LogNormal requires either TArgs or 3 arguments to be present");
|
|
}
|
|
|
|
REQUIRE_TRUE(input->isVector(), 0, "LogNormal requires pure shape as first argument");
|
|
|
|
std::vector<Nd4jLong> shape(input->lengthOf());
|
|
for (int e = 0; e < input->lengthOf(); e++)
|
|
shape[e] = input->e<Nd4jLong>(e);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillLogNormal(block.launchContext(), block.randomGenerator(), z, mean, stdev);
|
|
|
|
// FIXME: !!
|
|
//OVERWRITE_RESULT(z);
|
|
}
|
|
break;
|
|
case sd::random::TruncatedNormalDistribution: {
|
|
// truncated norm distribution
|
|
T mean, stdev;
|
|
if (block.width() > 2) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "TruncatedNormal: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "TruncatedNormal: Third argument must be scalar");
|
|
|
|
mean = arg1->e<T>(0);
|
|
stdev = arg2->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 2) {
|
|
mean = T_ARG(0);
|
|
stdev = T_ARG(1);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "TruncatedNormal requires either TArgs or 3 arguments to be present");
|
|
}
|
|
|
|
REQUIRE_TRUE(input->isVector(), 0, "TruncatedNormal requires pure shape as first argument");
|
|
|
|
std::vector<Nd4jLong> shape(input->lengthOf());
|
|
for (int e = 0; e < input->lengthOf(); e++)
|
|
shape[e] = input->e<Nd4jLong>(e);
|
|
|
|
auto z = OUTPUT_VARIABLE(0); // NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
|
|
|
|
RandomLauncher::fillTruncatedNormal(block.launchContext(), block.randomGenerator(), z, mean, stdev);
|
|
}
|
|
break;
|
|
case sd::random::AlphaDropOut: {
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
T prob, a, b, pa;
|
|
if (block.width() > 4) {
|
|
auto arg1 = INPUT_VARIABLE(1);
|
|
auto arg2 = INPUT_VARIABLE(2);
|
|
auto arg3 = INPUT_VARIABLE(3);
|
|
auto arg4 = INPUT_VARIABLE(4);
|
|
REQUIRE_TRUE(arg1->isScalar(), 0, "AlphaDropOut: Second argument must be scalar");
|
|
REQUIRE_TRUE(arg2->isScalar(), 0, "AlphaDropOut: Third argument must be scalar");
|
|
REQUIRE_TRUE(arg3->isScalar(), 0, "AlphaDropOut: Fourth argument must be scalar");
|
|
REQUIRE_TRUE(arg4->isScalar(), 0, "AlphaDropOut: Fifth argument must be scalar");
|
|
|
|
prob = arg1->e<T>(0);
|
|
a = arg2->e<T>(0);
|
|
b = arg3->e<T>(0);
|
|
pa = arg4->e<T>(0);
|
|
} else if (block.getTArguments()->size() == 4) {
|
|
prob = T_ARG(0);
|
|
a = T_ARG(1);
|
|
b = T_ARG(2);
|
|
pa = T_ARG(3);
|
|
} else {
|
|
REQUIRE_TRUE(false, 0, "AlphaDropOut requires either TArgs or 5 arguments to be present");
|
|
}
|
|
|
|
if (!block.isInplace())
|
|
z->assign(input);
|
|
|
|
RandomLauncher::applyAlphaDropOut(block.launchContext(), block.randomGenerator(), z, prob, a, b, pa);
|
|
}
|
|
break;
|
|
case sd::random::Linspace: {
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
auto start = INPUT_VARIABLE(0);
|
|
auto finish = INPUT_VARIABLE(1);
|
|
auto numOfElements = INPUT_VARIABLE(2);
|
|
|
|
z->linspace(start->e<double>(0), (finish->e<double>(0) - start->e<double>(0)) / (numOfElements->e<Nd4jLong>(0) - 1.));
|
|
}
|
|
break;
|
|
default: {
|
|
nd4j_printf("Unknown random op requested: [%i]\n", opNum);
|
|
return ND4J_STATUS_KERNEL_FAILURE;
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Nd4jStatus LegacyRandomOp::validateAndExecute(Context &block) {
|
|
// REQUIRE_TRUE(block.getRNG() != nullptr, 0, "RNG should be provided for LegacyRandomOp, but got NULL instead at node_%i", block.nodeId())
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
BUILD_SINGLE_SELECTOR(z->dataType(), return validateAndExecute_, (block), FLOAT_TYPES);
|
|
}
|
|
|
|
/**
|
|
* For transform operations, output shape always equals to input shape. With just a few exclusions, like im2col and col2im.
|
|
* But these ops already have CustomOp implementations.
|
|
*
|
|
*/
|
|
ShapeList *LegacyRandomOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) {
|
|
auto inShape = inputShape->at(0);
|
|
auto xType = ArrayOptions::dataType(inShape);
|
|
Nd4jLong *newShape;
|
|
if (DataTypeUtils::isR(xType)) {
|
|
COPY_SHAPE(inShape, newShape);
|
|
|
|
return SHAPELIST(CONSTANT(newShape));
|
|
} else if (DataTypeUtils::isZ(xType)) {
|
|
auto zShapeArr = INPUT_VARIABLE(0);
|
|
auto zShapeVector = zShapeArr->asVectorT<Nd4jLong>();
|
|
auto dtype = block.dataType();
|
|
|
|
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(dtype, 'c', zShapeVector));
|
|
} else
|
|
throw std::runtime_error("LegacyRandomOp: Unknown input data type!");
|
|
}
|
|
|
|
Nd4jStatus LegacyRandomOp::execute(Context* block) {
|
|
return DeclarableOp::execute(block);
|
|
}
|
|
|
|
sd::ResultSet LegacyRandomOp::execute(sd::graph::RandomGenerator& rng, std::initializer_list<NDArray*> inputs, std::initializer_list<double> tArgs, std::initializer_list<int> iArgs, bool isInplace) {
|
|
std::vector<NDArray*> ins(inputs);
|
|
std::vector<double> tas(tArgs);
|
|
std::vector<int> ias(iArgs);
|
|
return this->execute(rng, ins, tas, ias, isInplace);
|
|
}
|
|
|
|
sd::ResultSet LegacyRandomOp::execute(sd::graph::RandomGenerator& rng, std::vector<NDArray*>& inputs, std::vector<double>& tArgs, std::vector<int>& iArgs, bool isInplace) {
|
|
VariableSpace variableSpace;
|
|
ResultSet arrayList;
|
|
//ResultSet arrayList;
|
|
|
|
if (isInplace)
|
|
arrayList.setNonRemovable();
|
|
|
|
int cnt = -1;
|
|
std::vector<int> in;
|
|
for (auto v: inputs) {
|
|
if (v == nullptr)
|
|
continue;
|
|
|
|
auto var = new Variable(v);
|
|
var->markRemovable(false);
|
|
in.push_back(cnt);
|
|
variableSpace.putVariable(cnt--, var);
|
|
}
|
|
|
|
Context block(1, &variableSpace, false);
|
|
// FIX ME: implement setRng method
|
|
block.setRng(rng);
|
|
block.fillInputs(in);
|
|
block.markInplace(isInplace);
|
|
|
|
for (int e = 0; e < tArgs.size(); e++)
|
|
block.getTArguments()->emplace_back(tArgs.at(e));
|
|
|
|
|
|
for (int e = 0; e < iArgs.size(); e++)
|
|
block.getIArguments()->emplace_back(iArgs.at(e));
|
|
|
|
Nd4jStatus status = this->execute(&block);
|
|
arrayList.setStatus(status);
|
|
if (status != ND4J_STATUS_OK)
|
|
return arrayList;
|
|
|
|
|
|
for (int e = 0; e < DataTypeUtils::max<int>(); e++) {
|
|
std::pair<int,int> pair(1, e);
|
|
if (variableSpace.hasVariable(pair)) {
|
|
auto var = variableSpace.getVariable(pair);
|
|
auto arr = var->getNDArray();
|
|
if (!arr->isAttached()) {
|
|
var->markRemovable(false);
|
|
arrayList.push_back(arr);
|
|
} else {
|
|
arrayList.push_back(arr->detach());
|
|
}
|
|
} else
|
|
break;
|
|
}
|
|
|
|
return arrayList;
|
|
}
|
|
|
|
Nd4jStatus LegacyRandomOp::validateDataTypes(Context& block) {
|
|
if (block.isFastPath()) {
|
|
// in this case we'll roll through pre-defined outputs
|
|
auto fpo = block.fastpath_out();
|
|
for (auto v:fpo) {
|
|
if (v != nullptr) {
|
|
if (!v->isR())
|
|
return ND4J_STATUS_BAD_ARGUMENTS;
|
|
}
|
|
}
|
|
} else {
|
|
std::pair<int,int> pair(block.nodeId(), 0);
|
|
if (block.getVariableSpace()->hasVariable(pair)) {
|
|
auto var = block.variable(pair);
|
|
if (!var->hasNDArray())
|
|
return ND4J_STATUS_BAD_ARGUMENTS;
|
|
|
|
auto arr = var->getNDArray();
|
|
if (!arr->isR())
|
|
return ND4J_STATUS_BAD_ARGUMENTS;
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template Nd4jStatus LegacyRandomOp::validateAndExecute_, (Context&), FLOAT_TYPES);
|
|
}
|
|
}
|