cavis/libnd4j/include/ops/declarable/impl/LegacyRandomOp.cpp
raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

449 lines
19 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 16.10.2017.
//
#include <ops/declarable/LegacyRandomOp.h>
#include <helpers/RandomLauncher.h>
#include <legacy/NativeOpExecutioner.h>
#include <array/NDArrayFactory.h>
#include <graph/Status.h>
#include <ops/declarable/CustomOperations.h>
namespace sd {
namespace ops {
LegacyRandomOp::LegacyRandomOp() : LegacyOp::LegacyOp(1) {
// just a no-op
}
LegacyRandomOp::LegacyRandomOp(int opNum) : LegacyOp::LegacyOp(1, opNum) {
// just a no-op
}
LegacyOp* LegacyRandomOp::clone() {
return new LegacyRandomOp(this->_opNum);
}
template <typename T>
Nd4jStatus LegacyRandomOp::validateAndExecute_(Context &block) {
auto input = INPUT_VARIABLE(0);
int opNum = block.opNum() < 0 ? this->_opNum : block.opNum();
/*
(0, randomOps::UniformDistribution) ,\
(1, randomOps::DropOut) ,\
(2, randomOps::DropOutInverted) ,\
(3, randomOps::ProbablisticMerge) ,\
(4, randomOps::Linspace) ,\
(5, randomOps::Choice) ,\
(6, randomOps::GaussianDistribution) ,\
(7, randomOps::BernoulliDistribution) ,\
(8, randomOps::BinomialDistribution),\
(9, randomOps::BinomialDistributionEx),\
(10, randomOps::LogNormalDistribution) ,\
(11, randomOps::TruncatedNormalDistribution) ,\
(12, randomOps::AlphaDropOut)
*/
switch(opNum) {
case sd::random::UniformDistribution: {
// uniform distribution
T from, to;
if (block.width() > 2) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
REQUIRE_TRUE(arg1->isScalar(), 0, "Uniform: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "Uniform: Third argument must be scalar");
from = arg1->e<T>(0);
to = arg2->e<T>(0);
} else if (block.getTArguments()->size() == 2) {
from = T_ARG(0);
to = T_ARG(1);
} else {
REQUIRE_TRUE(false, 0, "Uniform requires either TArgs or 3 arguments to be present");
}
auto z = OUTPUT_VARIABLE(0); //NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillUniform(block.launchContext(), block.randomGenerator(), z, from, to);
// FIXME:
//OVERWRITE_RESULT(z);
}
break;
case sd::random::DropOut: {
auto z = OUTPUT_VARIABLE(0);
T prob;
if (block.width() > 1) {
auto arg = INPUT_VARIABLE(1);
REQUIRE_TRUE(arg->isScalar(), 0, "DropOut: Second argument must be scalar");
prob = arg->e<T>(0);
} else if (block.getTArguments()->size() > 0) {
prob = T_ARG(0);
} else {
REQUIRE_TRUE(false, 0, "DropOut requires either TArgs or second argument to be present");
}
if (!block.isInplace())
z->assign(input);
RandomLauncher::applyDropOut(block.launchContext(), block.randomGenerator(), z, prob);
}
break;
case sd::random::DropOutInverted: {
auto z = OUTPUT_VARIABLE(0);
sd::ops::dropout op;
return op.execute(&block);
}
break;
case sd::random::GaussianDistribution: {
// gaussian distribution
T mean, stdev;
if (block.width() > 2) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
REQUIRE_TRUE(arg1->isScalar(), 0, "Gaussian: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "Gaussian: Third argument must be scalar");
mean = arg1->e<T>(0);
stdev = arg2->e<T>(0);
} else if (block.getTArguments()->size() == 2) {
mean = T_ARG(0);
stdev = T_ARG(1);
} else {
REQUIRE_TRUE(false, 0, "Gaussian requires either TArgs or 3 arguments to be present");
}
REQUIRE_TRUE(input->isVector(), 0, "Gaussian requires pure shape as first argument");
std::vector<Nd4jLong> shape(input->lengthOf());
for (int e = 0; e < input->lengthOf(); e++)
shape[e] = input->e<Nd4jLong>(e);
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillGaussian(block.launchContext(), block.randomGenerator(), z, mean, stdev);
// FIXME: !!
//OVERWRITE_RESULT(z);
}
break;
case sd::random::BernoulliDistribution: {
// bernoulli distribution
T prob;
if (block.width() > 1) {
auto arg1 = INPUT_VARIABLE(1);
REQUIRE_TRUE(arg1->isScalar(), 0, "Bernoulli: Second argument must be scalar");
prob = arg1->e<T>(0);
} else if (block.getTArguments()->size() > 0) {
prob = T_ARG(0);
} else {
REQUIRE_TRUE(false, 0, "Bernoulli requires either 1 TArg or 2 arguments to be present");
}
REQUIRE_TRUE(input->isVector(), 0, "Bernoulli requires pure shape as first argument");
std::vector<Nd4jLong> shape(input->lengthOf());
for (int e = 0; e < input->lengthOf(); e++)
shape[e] = input->e<Nd4jLong>(e);
auto z = OUTPUT_VARIABLE(0); // NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillBernoulli(block.launchContext(), block.randomGenerator(), z, prob);
// FIXME:
//OVERWRITE_RESULT(z);
}
break;
case sd::random::BinomialDistributionEx: {
// BinomialEx distribution
T prob;
int trials;
if (block.width() > 2) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
REQUIRE_TRUE(arg1->isScalar(), 0, "Binomial: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "Binomial: Third argument must be scalar");
trials = arg1->e<int>(0);
prob = arg2->e<T>(0);
} else if (block.getTArguments()->size() == 1 && block.getIArguments()->size() == 1) {
trials = INT_ARG(0);
prob = T_ARG(0);
} else {
REQUIRE_TRUE(false, 0, "Binomial requires either TArgs/IArgs or 3 arguments to be present");
}
REQUIRE_TRUE(input->isVector(), 0, "Binomial requires pure shape as first argument");
std::vector<Nd4jLong> shape(input->lengthOf());
for (int e = 0; e < input->lengthOf(); e++)
shape[e] = input->e<Nd4jLong>(e);
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillBinomial(block.launchContext(), block.randomGenerator(), z, trials, prob);
// FIXME: !!!
//OVERWRITE_RESULT(z);
}
break;
case sd::random::LogNormalDistribution: {
// lognorm distribution
T mean, stdev;
if (block.width() > 2) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
REQUIRE_TRUE(arg1->isScalar(), 0, "LogNormal: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "LogNormal: Third argument must be scalar");
mean = arg1->e<T>(0);
stdev = arg2->e<T>(0);
} else if (block.getTArguments()->size() == 2) {
mean = T_ARG(0);
stdev = T_ARG(1);
} else {
REQUIRE_TRUE(false, 0, "LogNormal requires either TArgs or 3 arguments to be present");
}
REQUIRE_TRUE(input->isVector(), 0, "LogNormal requires pure shape as first argument");
std::vector<Nd4jLong> shape(input->lengthOf());
for (int e = 0; e < input->lengthOf(); e++)
shape[e] = input->e<Nd4jLong>(e);
auto z = OUTPUT_VARIABLE(0);//NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillLogNormal(block.launchContext(), block.randomGenerator(), z, mean, stdev);
// FIXME: !!
//OVERWRITE_RESULT(z);
}
break;
case sd::random::TruncatedNormalDistribution: {
// truncated norm distribution
T mean, stdev;
if (block.width() > 2) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
REQUIRE_TRUE(arg1->isScalar(), 0, "TruncatedNormal: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "TruncatedNormal: Third argument must be scalar");
mean = arg1->e<T>(0);
stdev = arg2->e<T>(0);
} else if (block.getTArguments()->size() == 2) {
mean = T_ARG(0);
stdev = T_ARG(1);
} else {
REQUIRE_TRUE(false, 0, "TruncatedNormal requires either TArgs or 3 arguments to be present");
}
REQUIRE_TRUE(input->isVector(), 0, "TruncatedNormal requires pure shape as first argument");
std::vector<Nd4jLong> shape(input->lengthOf());
for (int e = 0; e < input->lengthOf(); e++)
shape[e] = input->e<Nd4jLong>(e);
auto z = OUTPUT_VARIABLE(0); // NDArrayFactory::create_<T>('c', shape, block.getWorkspace());
RandomLauncher::fillTruncatedNormal(block.launchContext(), block.randomGenerator(), z, mean, stdev);
}
break;
case sd::random::AlphaDropOut: {
auto z = OUTPUT_VARIABLE(0);
T prob, a, b, pa;
if (block.width() > 4) {
auto arg1 = INPUT_VARIABLE(1);
auto arg2 = INPUT_VARIABLE(2);
auto arg3 = INPUT_VARIABLE(3);
auto arg4 = INPUT_VARIABLE(4);
REQUIRE_TRUE(arg1->isScalar(), 0, "AlphaDropOut: Second argument must be scalar");
REQUIRE_TRUE(arg2->isScalar(), 0, "AlphaDropOut: Third argument must be scalar");
REQUIRE_TRUE(arg3->isScalar(), 0, "AlphaDropOut: Fourth argument must be scalar");
REQUIRE_TRUE(arg4->isScalar(), 0, "AlphaDropOut: Fifth argument must be scalar");
prob = arg1->e<T>(0);
a = arg2->e<T>(0);
b = arg3->e<T>(0);
pa = arg4->e<T>(0);
} else if (block.getTArguments()->size() == 4) {
prob = T_ARG(0);
a = T_ARG(1);
b = T_ARG(2);
pa = T_ARG(3);
} else {
REQUIRE_TRUE(false, 0, "AlphaDropOut requires either TArgs or 5 arguments to be present");
}
if (!block.isInplace())
z->assign(input);
RandomLauncher::applyAlphaDropOut(block.launchContext(), block.randomGenerator(), z, prob, a, b, pa);
}
break;
case sd::random::Linspace: {
auto z = OUTPUT_VARIABLE(0);
auto start = INPUT_VARIABLE(0);
auto finish = INPUT_VARIABLE(1);
auto numOfElements = INPUT_VARIABLE(2);
z->linspace(start->e<double>(0), (finish->e<double>(0) - start->e<double>(0)) / (numOfElements->e<Nd4jLong>(0) - 1.));
}
break;
default: {
nd4j_printf("Unknown random op requested: [%i]\n", opNum);
return ND4J_STATUS_KERNEL_FAILURE;
}
}
return Status::OK();
}
Nd4jStatus LegacyRandomOp::validateAndExecute(Context &block) {
// REQUIRE_TRUE(block.getRNG() != nullptr, 0, "RNG should be provided for LegacyRandomOp, but got NULL instead at node_%i", block.nodeId())
auto z = OUTPUT_VARIABLE(0);
BUILD_SINGLE_SELECTOR(z->dataType(), return validateAndExecute_, (block), FLOAT_TYPES);
}
/**
* For transform operations, output shape always equals to input shape. With just a few exclusions, like im2col and col2im.
* But these ops already have CustomOp implementations.
*
*/
ShapeList *LegacyRandomOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) {
auto inShape = inputShape->at(0);
auto xType = ArrayOptions::dataType(inShape);
Nd4jLong *newShape;
if (DataTypeUtils::isR(xType)) {
COPY_SHAPE(inShape, newShape);
return SHAPELIST(CONSTANT(newShape));
} else if (DataTypeUtils::isZ(xType)) {
auto zShapeArr = INPUT_VARIABLE(0);
auto zShapeVector = zShapeArr->asVectorT<Nd4jLong>();
auto dtype = block.dataType();
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(dtype, 'c', zShapeVector));
} else
throw std::runtime_error("LegacyRandomOp: Unknown input data type!");
}
Nd4jStatus LegacyRandomOp::execute(Context* block) {
return DeclarableOp::execute(block);
}
sd::ResultSet LegacyRandomOp::execute(sd::graph::RandomGenerator& rng, std::initializer_list<NDArray*> inputs, std::initializer_list<double> tArgs, std::initializer_list<int> iArgs, bool isInplace) {
std::vector<NDArray*> ins(inputs);
std::vector<double> tas(tArgs);
std::vector<int> ias(iArgs);
return this->execute(rng, ins, tas, ias, isInplace);
}
sd::ResultSet LegacyRandomOp::execute(sd::graph::RandomGenerator& rng, std::vector<NDArray*>& inputs, std::vector<double>& tArgs, std::vector<int>& iArgs, bool isInplace) {
VariableSpace variableSpace;
ResultSet arrayList;
//ResultSet arrayList;
if (isInplace)
arrayList.setNonRemovable();
int cnt = -1;
std::vector<int> in;
for (auto v: inputs) {
if (v == nullptr)
continue;
auto var = new Variable(v);
var->markRemovable(false);
in.push_back(cnt);
variableSpace.putVariable(cnt--, var);
}
Context block(1, &variableSpace, false);
// FIX ME: implement setRng method
block.setRng(rng);
block.fillInputs(in);
block.markInplace(isInplace);
for (int e = 0; e < tArgs.size(); e++)
block.getTArguments()->emplace_back(tArgs.at(e));
for (int e = 0; e < iArgs.size(); e++)
block.getIArguments()->emplace_back(iArgs.at(e));
Nd4jStatus status = this->execute(&block);
arrayList.setStatus(status);
if (status != ND4J_STATUS_OK)
return arrayList;
for (int e = 0; e < DataTypeUtils::max<int>(); e++) {
std::pair<int,int> pair(1, e);
if (variableSpace.hasVariable(pair)) {
auto var = variableSpace.getVariable(pair);
auto arr = var->getNDArray();
if (!arr->isAttached()) {
var->markRemovable(false);
arrayList.push_back(arr);
} else {
arrayList.push_back(arr->detach());
}
} else
break;
}
return arrayList;
}
Nd4jStatus LegacyRandomOp::validateDataTypes(Context& block) {
if (block.isFastPath()) {
// in this case we'll roll through pre-defined outputs
auto fpo = block.fastpath_out();
for (auto v:fpo) {
if (v != nullptr) {
if (!v->isR())
return ND4J_STATUS_BAD_ARGUMENTS;
}
}
} else {
std::pair<int,int> pair(block.nodeId(), 0);
if (block.getVariableSpace()->hasVariable(pair)) {
auto var = block.variable(pair);
if (!var->hasNDArray())
return ND4J_STATUS_BAD_ARGUMENTS;
auto arr = var->getNDArray();
if (!arr->isR())
return ND4J_STATUS_BAD_ARGUMENTS;
}
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template Nd4jStatus LegacyRandomOp::validateAndExecute_, (Context&), FLOAT_TYPES);
}
}