cavis/libnd4j/include/loops/cuda/summarystatsreduce.cu
raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

419 lines
18 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <system/pointercast.h>
#include <types/types.h>
#include <types/float16.h>
#include <system/op_boilerplate.h>
#include <loops/summarystatsreduce.h>
#include <helpers/shape.h>
#include <helpers/TAD.h>
#include <system/dll.h>
#include <system/Environment.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <helpers/DebugHelper.h>
#include <ops/specials_cuda.h>
using namespace simdOps;
namespace functions {
namespace summarystats {
template <typename X, typename Z>
void _CUDA_G summaryStatsReduceT(int op, void const* dx, Nd4jLong const* xShapeInfo, int xRank, void *extraParams, void *z, Nd4jLong const* zShapeInfo, int zRank, int *dimension, int dimensionLength, int postProcessOrNot,bool biasCorrected,int *allocationBuffer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
functions::summarystats::SummaryStatsReduce<X,Z>::transform(op,dx,xShapeInfo,extraParams,z,zShapeInfo,dimension,dimensionLength,biasCorrected,allocationBuffer,reductionBuffer,tadOnlyShapeInfo,tadOffsets);
}
/**
*
* @param sPartialsRef
* @param tid
* @param extraParams
*/
template<typename X, typename Z>
template<typename OpType>
_CUDA_D void SummaryStatsReduce<X,Z>::aggregatePartials(SummaryStatsData<X> **sPartialsRef, Nd4jLong tid, Nd4jLong numElements, void *vextraParams) {
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
auto extraParams = static_cast<Z*>(vextraParams);
SummaryStatsData<X> *sPartials = *sPartialsRef;
Nd4jLong floorPow2 = blockDim.x;
if (floorPow2 & (floorPow2 - 1)) {
while (floorPow2 & (floorPow2 - 1)) {
floorPow2 &= floorPow2 - 1;
}
if (tid >= floorPow2) {
SummaryStatsData<X> prev = sPartials[tid - floorPow2];
SummaryStatsData<X> curr = sPartials[tid];
sPartials[tid - floorPow2] = update(prev, curr, extraParams);
}
__syncthreads();
}
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
if (tid < activeThreads && tid + activeThreads < numElements) {
SummaryStatsData<X> curr = sPartials[tid];
SummaryStatsData<X> next = sPartials[tid + activeThreads];
sPartials[tid] = update(curr, next, extraParams);
}
__syncthreads();
}
};
/**
* @param n n is the number of
* elements to loop through
* @param dx the data to operate on
* @param xVectorInfo the meta data for the vector:
* 0 is the offset
* 1 is the increment/stride
* 2 is the real length of the buffer (n and dx.length won't always be the same)
* 3 is the element wise stride for the buffer
* 4 is the number of elements it takes to get to the next row/column/tensor
* @param gpuInformation
* 0 is the block size
* 1 is the grid size
* 2 is the shared memory size
* @param problemDefinition
* 0 is the number of elements per vector
* 1 is the number of vectors
*/
template<typename X, typename Z>
template<typename OpType>
_CUDA_D void SummaryStatsReduce<X,Z>::transform(void const* vx, Nd4jLong const* xShapeInfo,
void *vextraParams,
void *vz, Nd4jLong const* zShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationBuffer, void *vreductionBuffer,
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
auto dx = static_cast<X const*>(vx);
auto z = static_cast<Z*>(vz);
auto extraParams = static_cast<Z*>(vextraParams);
auto reductionBuffer = static_cast<Z*>(vreductionBuffer);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ volatile int resultScalar;
__shared__ int xElementWiseStride;
int numElements = blockDim.x;
//shared memory space for storing intermediate results
__shared__ SummaryStatsData<X> *sPartials;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<SummaryStatsData<X>*>(shmem);
}
__syncthreads();
Z startingVal = startingValue(dx);
SummaryStatsData<X> val;
val.initWithValue(startingVal);
val.n = 0;
sPartials[threadIdx.x] = val;
//length for the tad
__shared__ volatile int xLength;
__shared__ volatile int resultLength;
SummaryStatsData<X> reduction;
reduction.initWithValue(0.0);
reduction.n = 0;
if (threadIdx.x == 0) {
if (zShapeInfo != nullptr)
resultLength = shape::length(zShapeInfo);
else resultLength = 1;
if (dimensionLength == 1) {
if (resultLength == 1 && (dimension == nullptr || dimension[0] == MAX_DIMENSION))
resultScalar = 1;
else
resultScalar = 0;
}
else
resultScalar = 0;
if (resultLength == 1)
resultScalar = 1;
auto xStride = shape::stride(xShapeInfo);
auto xOrder = shape::order(xShapeInfo);
if (dimension != nullptr && (dimension[0] != MAX_DIMENSION && dimensionLength == 1)) {
xElementWiseStride = xStride[dimension[0]];
}
else {
xElementWiseStride = shape::elementWiseStride(xShapeInfo);
}
xLength = shape::length(xShapeInfo);
}
__syncthreads();
if (!resultScalar) {
__shared__ int tadLength;
__shared__ int tadEWS;
__shared__ int numTads;
if (threadIdx.x == 0) {
tadLength = shape::length(tadOnlyShapeInfo);//shape::tadLength(xShapeInfo, dimension, dimensionLength);
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
numTads = shape::length(xShapeInfo) / tadLength;
}
__syncthreads();
if (tadEWS == 0) {
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
auto tadOffsetForBlock = tadOffsets[r];
val.initWithValue(startingVal);
val.n = 0;
sPartials[threadIdx.x] = val;
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo);
SummaryStatsData<X> indexVal2;
indexVal2.initWithValue(dx[xOffset]);
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], OpType::op(indexVal2, extraParams), extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
__syncthreads();
if (threadIdx.x == 0) {
z[r] = OpType::getValue(postProcessOrNot, sPartials[threadIdx.x]);
}
__syncthreads();
}
}
else {
for (int i = blockIdx.x; i < numTads; i += gridDim.x) {
auto tadOffsetForBlock = tadOffsets[i];
val.initWithValue(startingVal);
val.n = 0;
sPartials[threadIdx.x] = val;
for (int x = threadIdx.x; x < tadLength; x += blockDim.x) {
auto indexX = tadOffsetForBlock + x * tadEWS;
SummaryStatsData<X> indexVal2;
indexVal2.initWithValue(dx[indexX]);
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], OpType::op(indexVal2, extraParams), extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
__syncthreads();
if (threadIdx.x == 0) {
z[i] = OpType::getValue(postProcessOrNot, sPartials[threadIdx.x]); //postProcess(sPartials[0],tadLength ,extraParams);
}
}
}
}
else if (resultScalar) {
__shared__ int n;
if (threadIdx.x == 0) {
xElementWiseStride = shape::elementWiseStride(xShapeInfo);
n = shape::length(xShapeInfo);
}
__syncthreads();
if (xElementWiseStride >= 1) {
for (Nd4jLong i = tid; i < n; i += (blockDim.x * gridDim.x)) {
SummaryStatsData<X> indexVal2;
indexVal2.initWithValue(dx[i * xElementWiseStride]);
reduction = update(reduction, indexVal2, extraParams);
}
}
else {
for (Nd4jLong i = tid; i < n; i += blockDim.x * gridDim.x) {
auto offset = shape::getIndexOffset(i, xShapeInfo);
SummaryStatsData<X> indexVal2;
indexVal2.initWithValue(dx[offset]);
reduction = update(reduction, indexVal2, extraParams);
}
}
sPartials[threadIdx.x] = reduction;
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, blockDim.x, extraParams);
__syncthreads();
if (gridDim.x > 1) {
__shared__ bool amLast;
unsigned int *tc = (unsigned int *)reductionBuffer;
tid = threadIdx.x;
if (threadIdx.x == 0) {
SummaryStatsData<X> *pBuffer = (SummaryStatsData<X>*) reductionBuffer;
pBuffer[blockIdx.x] = sPartials[0];
}
__threadfence();
__syncthreads();
if (tid == 0) {
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
amLast = (ticket == gridDim.x - 1);
}
__syncthreads();
if (amLast) {
tc[16384] = 0;
SummaryStatsData<X>* pBuffer = (SummaryStatsData<X>*) reductionBuffer;
Z startingVal = startingValue(dx);
SummaryStatsData<X> val;
val.initWithValue(startingVal);
val.n = 0;
sPartials[threadIdx.x] = val;
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) {
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], pBuffer[i], extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, gridDim.x, extraParams);
__syncthreads();
if (tid == 0) {
z[0] = OpType::getValue(postProcessOrNot, sPartials[0]);
}
}
}
else {
if (tid == 0) {
unsigned int *tc = (unsigned *)reductionBuffer;
tc[16384] = 0;
z[0] = z[0] = OpType::getValue(postProcessOrNot, sPartials[0]);
}
}
}
};
template <typename X, typename Y>
_CUDA_D void SummaryStatsReduce<X,Y>::transform(const int opNum, void const* dx, Nd4jLong const* xShapeInfo, void *extraParams, void *z, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
DISPATCH_BY_OPNUM_TT(transform, PARAMS(dx, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationBuffer, reductionBuffer, tadOnlyShapeInfo, tadOffsets), SUMMARY_STATS_OPS);
};
template <typename X, typename Z>
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduceScalar(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
auto x = static_cast<X const*>(vx);
auto extraParams = static_cast<Z*>(vextraParams);
auto z = reinterpret_cast<Z*>(vz);
auto reductionPointerA = reinterpret_cast<Z*>(reductionBuffer);
if (sd::Environment::getInstance()->isDebugAndVerbose())
printf("D16 opNum:[%i]\n", opNum);
summaryStatsReduceT<X,Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
opNum,
x,
xShapeInfo, shape::rank(hxShapeInfo),
extraParams,
z,
zShapeInfo, shape::rank(hzShapeInfo),
nullptr,
1,
1,biasCorrected, nullptr, reductionPointerA, tadShapeInfo, tadOffsets);
// this is blocking method since method should return scalar
sd::DebugHelper::checkErrorCode(stream, "execSSReduceScalar(...) failed");
}
template <typename X, typename Z>
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
auto x = static_cast<X const*>(vx);
auto z = static_cast<Z*>(vz);
auto extraParams = static_cast<Z*>(vextraParams);
if (sd::Environment::getInstance()->isDebugAndVerbose())
printf("F17 opNum:[%i]\n", opNum);
auto reductionPointerA = reinterpret_cast<Z*>(reductionBuffer);
summaryStatsReduceT<X,Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
opNum,
x,
xShapeInfo, shape::rank(hxShapeInfo),
extraParams,
z,
zShapeInfo, shape::rank(hzShapeInfo),
nullptr,
1,
1,biasCorrected, nullptr, reductionPointerA, tadShapeInfo, tadOffsets);
DEBUG_KERNEL(stream, opNum);
}
template<typename X, typename Z>
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, int *dimension, int dimensionLength, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
auto x = static_cast<X const*>(vx);
auto z = static_cast<Z*>(vz);
auto extraParams = static_cast<Z*>(vextraParams);
if (sd::Environment::getInstance()->isDebugAndVerbose())
printf("D18 opNum:[%i]\n", opNum);
summaryStatsReduceT<X, Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
opNum,
x,
xShapeInfo, shape::rank(hxShapeInfo),
extraParams,
z,
zShapeInfo, shape::rank(hzShapeInfo),
dimension,
dimensionLength,
1, biasCorrected, nullptr, reinterpret_cast<Z*>(reductionBuffer), tadShapeInfo, tadOffsets);
DEBUG_KERNEL(stream, opNum);
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT SummaryStatsReduce, , LIBND4J_TYPES, FLOAT_TYPES);
}
}