122 lines
5.4 KiB
C++
122 lines
5.4 KiB
C++
/* ******************************************************************************
|
|
*
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* See the NOTICE file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 17.10.2017.
|
|
//
|
|
|
|
#include <ops/declarable/LegacyStatsOp.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <array/DataTypeUtils.h>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
Nd4jStatus LegacyStatsOp::validateAndExecute(Context &block) {
|
|
auto x = INPUT_VARIABLE(0);
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
NDArray::prepareSpecialUse({z}, {x});
|
|
|
|
// we assume that opNuk is either stored in block, or was provided via op constructor
|
|
int opNum = block.opNum() < 0 ? this->_opNum : block.opNum();
|
|
|
|
// bias goes as first argument, unlike all other reductions
|
|
bool biasCorrected = false;
|
|
if (block.getIArguments()->size() > 0)
|
|
biasCorrected = INT_ARG(0) > 0;
|
|
|
|
ExtraArguments extras(*block.getTArguments());
|
|
PointersManager manager(block.launchContext(),"LegacyStatsOp");
|
|
|
|
if (block.getIArguments()->size() == 1 || (block.getIArguments()->size() == 2 && INT_ARG(1) == sd::DataTypeUtils::max<int>())) {
|
|
// scalar
|
|
NativeOpExecutioner::execSummaryStatsScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(),
|
|
extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(), biasCorrected);
|
|
} else {
|
|
// dimensions for TAD
|
|
// we should skip first argument here, because it's addressing bias correction
|
|
std::vector<int> dims(*block.getIArguments());
|
|
for (int e = 0; e < dims.size(); e++)
|
|
if (dims[e] < 0)
|
|
dims[e] += x->rankOf();
|
|
|
|
REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions requuired for reduction!");
|
|
|
|
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims);
|
|
|
|
auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //(Nd4jLong *) manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo));
|
|
auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //(Nd4jLong *) manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong));
|
|
|
|
NativeOpExecutioner::execSummaryStats(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()),
|
|
z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(), dims.data(), (int) dims.size(), pTadShape, pTadOffsets, biasCorrected);
|
|
}
|
|
|
|
manager.synchronize();
|
|
STORE_RESULT(*z);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
LegacyStatsOp::LegacyStatsOp() : LegacyOp::LegacyOp(1) {
|
|
//
|
|
}
|
|
|
|
LegacyStatsOp::LegacyStatsOp(int opNum) : LegacyOp::LegacyOp(1, opNum) {
|
|
//
|
|
}
|
|
|
|
LegacyOp* LegacyStatsOp::clone() {
|
|
return new LegacyStatsOp(this->_opNum);
|
|
}
|
|
|
|
/**
|
|
* For all reductions rules are simple: either you return scalar, or you return reduced NDArray.
|
|
* It solely depends on input shape, and requested dimensions
|
|
*/
|
|
ShapeList *LegacyStatsOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) {
|
|
auto inShape = inputShape->at(0);
|
|
|
|
Nd4jLong *newShape;
|
|
if (block.getIArguments()->size() == 0 || (block.getIArguments()->size() == 1 && INT_ARG(0) == sd::DataTypeUtils::max<int>())) {
|
|
// in this case we just return scalar
|
|
ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong);
|
|
newShape[0] = 2;
|
|
newShape[1] = 1;
|
|
newShape[2] = 1;
|
|
newShape[3] = 1;
|
|
newShape[4] = 1;
|
|
newShape[5] = 0;
|
|
newShape[6] = 1;
|
|
newShape[7] = 99;
|
|
} else {
|
|
// in this case we're building proper shape for reduction
|
|
auto array = new NDArray(nullptr, inShape, block.launchContext());
|
|
|
|
auto newShape = ShapeUtils::evalReduceShapeInfo('c', *block.getIArguments(), *array, false, true);
|
|
|
|
delete array;
|
|
return SHAPELIST(newShape);
|
|
}
|
|
|
|
return SHAPELIST(CONSTANT(newShape));
|
|
}
|
|
}
|
|
} |