174 lines
8.4 KiB
C++
174 lines
8.4 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/dropout.h>
|
|
#include <NativeOps.h>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static void dropoutSimple(NDArray const* input, NDArray* output, double probValue, int seed) {
|
|
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed);
|
|
int inLen = input->lengthOf();
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
float val = nodeRng.relativeT<T>(e, T(0.f), T(1.f));
|
|
|
|
if (val < probValue)
|
|
output->p<T>(e, input->e<T>(e) / probValue);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, inLen);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void dropoutSimple, (NDArray const* input, NDArray* output, double probValue, int seed), FLOAT_TYPES);
|
|
|
|
template <typename T>
|
|
int dropOutFunctor_(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
//NativeOps native;
|
|
//nd4j::graph::RandomGenerator nodeRng(seed); //static int dropOutFunctor_(nd4j::random::RandomBuffer* rng, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
//NativeOps native;
|
|
//native.reSeedBuffer(nullptr, (long)seed, rng);
|
|
//if (newRng )
|
|
if (reduceShape == nullptr){
|
|
dropoutSimple<T>(input, output, probValue, seed);
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
|
|
|
|
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
|
|
|
|
bool fit = true;
|
|
for( int i = 0; i < dims.size(); i++ ) {
|
|
if (fit) {
|
|
dims[i] = reduceShape->e<Nd4jLong>(i);
|
|
for (int e = 0; e < input->rankOf(); ++e)
|
|
if (fit)
|
|
if (input->sizeAt(e) % dims[i]) {
|
|
fit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check dims to fit input
|
|
REQUIRE_TRUE(fit, 0, "dropout: Noise shape should fit to input rank.");
|
|
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), output->getContext()));
|
|
chunk->assign(1.f);
|
|
//chunk->applyRandom<randomOps::DropOutInverted<T>>(rng, nullptr, chunk.get(), &probValue);
|
|
//NativeOpExecutioner::execRandom(random::DropOutInverted, rng, chunk->buffer(), chunk->shapeInfo(), chunk->buffer(), chunk->shapeInfo(), &prob);
|
|
dropoutSimple<T>(chunk.get(), chunk.get(), probValue, seed);
|
|
// broadcast chunk to full matrix
|
|
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
|
|
dropOutMultiplier->assign(1.f);
|
|
|
|
*dropOutMultiplier += *chunk;
|
|
|
|
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
int dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
auto xType = input->dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, return dropOutFunctor_, (context, input, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template int dropOutFunctor_, (graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue);, FLOAT_TYPES);
|
|
|
|
/////////////////////////////////// backrpopagations ///////////////////////////////////////////////
|
|
template <typename T>
|
|
static int dropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
|
|
int res = dropOutFunctor(context, input, output, reduceShape, seed, probValue);
|
|
|
|
if (ND4J_STATUS_OK == res)
|
|
for (Nd4jLong e = 0; e < output->lengthOf(); e++) {
|
|
if (output->e<float>(e) != 0.f) output->p<T>(e, gradOut->e<double>(e) / probValue);
|
|
// else (*output)(e) = T(0.f);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
static int alphaDropOutFunctor_(graph::Context& context, NDArray* input, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
//NativeOps native;
|
|
//auto rng = context.getRNG();
|
|
//native.reSeedBuffer(nullptr, (long)seed, rng);
|
|
//if (rng == nullptr)
|
|
// return ND4J_STATUS_BAD_RNG;
|
|
//T probValueArr[] = {probValue, alpha, alpha1, beta};
|
|
//input->template applyRandom<randomOps::AlphaDropOut<T>>(rng, nullptr, output, probValueArr);
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed);
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
float randVal = nodeRng.relativeT(e, T(0.f), T(1.f));
|
|
float xVal = input->e<float>(e);
|
|
output->p<float>(e, randVal >= probValue ? alpha * beta + alpha1 : alpha * xVal + alpha1);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, input->lengthOf());
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
template <typename T>
|
|
int alphaDropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
int res = alphaDropOutFunctor(context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta);
|
|
if (res == ND4J_STATUS_OK) {
|
|
(*output) *= alpha;
|
|
(*output) *= (*gradOut); //->applyPairwiseTransform<transform::Multiply>(gradOut, output, nullptr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int dropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return dropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int dropOutFunctorBP_, (graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue), FLOAT_TYPES);
|
|
|
|
int alphaDropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctor_, (context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int alphaDropOutFunctor_, (graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta), FLOAT_TYPES);
|
|
|
|
int alphaDropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template int alphaDropOutFunctorBP_, (graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta), FLOAT_TYPES);
|
|
|
|
}
|
|
}
|
|
} |