cavis/libnd4j/include/helpers/impl/jacobiSVD.cpp

451 lines
14 KiB
C++

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by Yurii Shyrma on 11.01.2018
//
#include <helpers/jacobiSVD.h>
#include <helpers/hhColPivQR.h>
#include <helpers/MmulHelper.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
JacobiSVD<T>::JacobiSVD(const NDArray& matrix, const bool calcU, const bool calcV, const bool fullUV) {
if(matrix.rankOf() != 2 || matrix.isScalar())
throw std::runtime_error("ops::helpers::JacobiSVD constructor: input array must be 2D matrix !");
_rows = static_cast<int>(matrix.sizeAt(0));
_cols = static_cast<int>(matrix.sizeAt(1));
_diagSize = math::nd4j_min<int>(_rows, _cols);
_calcU = calcU;
_calcV = calcV;
_fullUV = fullUV;
_s = NDArray(matrix.ordering(), {_diagSize, 1}, matrix.dataType(), matrix.getContext());
if(_calcU) {
if(_fullUV)
_u = NDArray(matrix.ordering(), {_rows, _rows}, matrix.dataType(), matrix.getContext());
else
_u = NDArray(matrix.ordering(), {_rows, _diagSize}, matrix.dataType(), matrix.getContext());
}
else
_u = NDArray(matrix.ordering(), {_rows, 1}, matrix.dataType(), matrix.getContext());
if(_calcV) {
if(_fullUV)
_v = NDArray(matrix.ordering(), {_cols, _cols}, matrix.dataType(), matrix.getContext());
else
_v = NDArray(matrix.ordering(), {_cols, _diagSize}, matrix.dataType(), matrix.getContext());
}
else
_v = NDArray(matrix.ordering(), {_cols, 1}, matrix.dataType(), matrix.getContext());
_m = NDArray(matrix.ordering(), {_diagSize, _diagSize}, matrix.dataType(), matrix.getContext());
evalData(matrix);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void JacobiSVD<T>::mulRotationOnLeft(const int i, const int j, NDArray& block, const NDArray& rotation) {
if(i < j) {
if(j+1 > block.sizeAt(0))
throw std::runtime_error("ops::helpers::JacobiSVD mulRotationOnLeft: second arguments is out of array row range !");
auto temp = block({i,j+1,j-i, 0,0,0}, true, true);
temp.assign(mmul(rotation, temp));
// auto pTemp = block({i,j+1,j-i, 0,0,0}, true, true);
// auto temp = pTemp.dup();
// pTemp.assign(mmul(rotation, temp));
}
else {
if(j+1 > block.sizeAt(0) || i+1 > block.sizeAt(0))
throw std::runtime_error("ops::helpers::JacobiSVD mulRotationOnLeft: some or both integer arguments are out of array row range !");
NDArray temp(block.ordering(), {2, block.sizeAt(1)}, block.dataType(), block.getContext());
auto row1 = block({i,i+1, 0,0}, true);
auto row2 = block({j,j+1, 0,0}, true);
auto rowTemp1 = temp({0,1, 0,0}, true);
auto rowTemp2 = temp({1,2, 0,0}, true);
rowTemp1.assign(row1);
rowTemp2.assign(row2);
temp.assign(mmul(rotation, temp));
row1.assign(rowTemp1);
row2.assign(rowTemp2);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void JacobiSVD<T>::mulRotationOnRight(const int i, const int j, NDArray& block, const NDArray& rotation) {
if(i < j) {
if(j+1 > block.sizeAt(1))
throw std::runtime_error("ops::helpers::JacobiSVD mulRotationOnRight: second argument is out of array column range !");
auto temp = block({0,0,0, i,j+1,j-i}, true, true);
temp.assign(mmul(temp, rotation));
// auto pTemp = block({0,0,0, i,j+1,j-i}, true, true);
// auto temp = pTemp.dup();
// pTemp.assign(mmul(temp, rotation));
}
else {
if(j+1 > block.sizeAt(1) || i+1 > block.sizeAt(1))
throw std::runtime_error("ops::helpers::JacobiSVD mulRotationOnRight: some or both integer arguments are out of array column range !");
NDArray temp(block.ordering(), {block.sizeAt(0), 2}, block.dataType(), block.getContext());
auto col1 = block({0,0, i,i+1}, true);
auto col2 = block({0,0, j,j+1}, true);
auto colTemp1 = temp({0,0, 0,1}, true);
auto colTemp2 = temp({0,0, 1,2}, true);
colTemp1.assign(col1);
colTemp2.assign(col2);
temp.assign(mmul(temp, rotation));
col1.assign(colTemp1);
col2.assign(colTemp2);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
bool JacobiSVD<T>::isBlock2x2NotDiag(NDArray& block, int p, int q, T& maxElem) {
NDArray rotation(_m.ordering(), {2, 2}, _m.dataType(), _m.getContext());
T n = math::nd4j_sqrt<T,T>(block.t<T>(p, p) * block.t<T>(p, p) + block.t<T>(q, p)*block.t<T>(q, p));
const T almostZero = DataTypeUtils::min<T>();
const T precision = DataTypeUtils::eps<T>();
if(n == (T)0.f) {
block.r<T>(p, p) = (T)0;
block.r<T>(q, p) = (T)0;
} else {
T v = block.t<T>(p, p) / n;
rotation.r<T>(0,0) = rotation.r<T>(1,1) = v;
v = block.t<T>(q, p) / n;
rotation.r<T>(0,1) = v;
rotation.r<T>(1,0) = -rotation.template t<T>(0,1);
mulRotationOnLeft(p, q, block, rotation);
if(_calcU)
mulRotationOnRight(p, q, _u, rotation.transpose());
}
maxElem = math::nd4j_max<T>(maxElem, math::nd4j_max<T>(math::nd4j_abs<T>(block.t<T>(p, p)), math::nd4j_abs<T>(block.t<T>(q, q))));
T threshold = math::nd4j_max<T>(almostZero, precision * maxElem);
return math::nd4j_abs<T>(block.t<T>(p, q)) > threshold || math::nd4j_abs<T>(block.t<T>(q, p)) > threshold;
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
bool JacobiSVD<T>::createJacobiRotation(const T& x, const T& y, const T& z, NDArray& rotation) {
T denom = (T)(2.f)* math::nd4j_abs<T>(y);
if(denom < DataTypeUtils::min<T>()) {
rotation.r<T>(0,0) = rotation.r<T>(1,1) = (T)1.f;
rotation.r<T>(0,1) = rotation.r<T>(1,0) = (T)0.f;
return false;
}
else {
T tau = (x-z)/denom;
T w = math::nd4j_sqrt<T,T>(tau*tau + (T)1.f);
T t;
if(tau > (T)0.)
t = (T)1.f / (tau + w);
else
t = (T)1.f / (tau - w);
T sign = t > (T)0. ? (T)1.f : (T)-1.f;
T cos = (T)1.f / math::nd4j_sqrt<T,T>(t*t + (T)1.f);
T sin = -sign * (y / math::nd4j_abs<T>(y)) * math::nd4j_abs<T>(t) * cos;
rotation.r<T>(0,1) = sin;
rotation.r<T>(1,0) = -sin;
rotation.r<T>(0,0) = rotation.r<T>(1,1) = cos;
return true;
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void JacobiSVD<T>::createJacobiRotationGivens(const T& p, const T& q, NDArray& rotation) {
T cos, sin;
if(q == (T)0) {
cos = p < (T)0 ? (T)-1 : (T)1;
sin = (T)0;
}
else if(p == (T)0) {
cos = (T)0;
sin = q < (T)0 ? (T)1 : (T)-1;
}
else if(math::nd4j_abs<T>(p) > math::nd4j_abs<T>(q)) {
T t = q / p;
T u = math::nd4j_sqrt<T,T>((T)1 + t*t);
if(p < (T)0)
u = -u;
cos = (T)1 / u;
sin = -t * cos;
}
else {
T t = p / q;
T u = math::nd4j_sqrt<T,T>((T)1 + t*t);
if(q < (T)0)
u = -u;
sin = -(T)1 / u;
cos = -t * sin;
}
rotation.r<T>(0,1) = sin;
rotation.r<T>(1,0) = -sin;
rotation.r<T>(0,0) = rotation.r<T>(1,1) = cos;
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void JacobiSVD<T>::svd2x2(const NDArray& block, int p, int q, NDArray& left, NDArray& right) {
NDArray m(block.ordering(), {2, 2}, block.dataType(), block.getContext());
m.r<T>(0,0) = block.t<T>(p,p);
m.r<T>(0,1) = block.t<T>(p,q);
m.r<T>(1,0) = block.t<T>(q,p);
m.r<T>(1,1) = block.t<T>(q,q);
NDArray rotation(block.ordering(), {2, 2}, block.dataType(), block.getContext());
T t = m.t<T>(0,0) + m.t<T>(1,1);
T d = m.t<T>(1,0) - m.t<T>(0,1);
if(math::nd4j_abs<T>(d) < DataTypeUtils::min<T>()) {
rotation.r<T>(0,0) = rotation.r<T>(1,1) = (T)1;
rotation.r<T>(0,1) = rotation.r<T>(1,0) = (T)0;
}
else {
T u = t / d;
T tmp = math::nd4j_sqrt<T,T>((T)1.f + u*u);
rotation.r<T>(0,0) = rotation.r<T>(1,1) = u / tmp;
rotation.r<T>(0,1) = (T)1.f / tmp;
rotation.r<T>(1,0) = -rotation.t<T>(0,1);
}
m.assign(mmul(rotation, m));
createJacobiRotation(m.t<T>(0,0), m.t<T>(0,1), m.t<T>(1,1), right);
left.assign(mmul(rotation, right.transpose()));
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void JacobiSVD<T>::evalData(const NDArray& matrix) {
const T precision = (T)2.f * DataTypeUtils::eps<T>();
const T almostZero = DataTypeUtils::min<T>();
T scale = matrix.reduceNumber(reduce::AMax).template t<T>(0);
if(scale== (T)0.f)
scale = (T)1.f;
if(_rows > _cols) {
HHcolPivQR qr(matrix / scale);
_m.assign(qr._qr({0,_cols, 0,_cols}));
_m.fillAsTriangular<T>(0., 0, 0, _m, 'l');
HHsequence hhSeg(qr._qr, qr._coeffs, 'u');
if(_fullUV)
hhSeg.applyTo(_u);
else if(_calcU) {
_u.setIdentity();
hhSeg.mulLeft(_u);
}
if(_calcV)
_v.assign(qr._permut);
}
else if(_rows < _cols) {
HHcolPivQR qr(matrix.transpose() / scale);
_m.assign(qr._qr({0,_rows, 0,_rows}));
_m.fillAsTriangular<T>(0., 0, 0, _m, 'l');
_m.transposei();
HHsequence hhSeg(qr._qr, qr._coeffs, 'u'); // type = 'u' is not mistake here !
if(_fullUV)
hhSeg.applyTo(_v);
else if(_calcV) {
_v.setIdentity();
hhSeg.mulLeft(_v);
}
if(_calcU)
_u.assign(qr._permut);
}
else {
_m.assign(matrix({0,_diagSize, 0,_diagSize}) / scale);
if(_calcU)
_u.setIdentity();
if(_calcV)
_v.setIdentity();
}
T maxDiagElem = 0.;
for(int i = 0; i < _diagSize; ++i) {
T current = math::nd4j_abs<T>(_m.t<T>(i,i));
if(maxDiagElem < current )
maxDiagElem = current;
}
bool stop = false;
while(!stop) {
stop = true;
for(int p = 1; p < _diagSize; ++p) {
for(int q = 0; q < p; ++q) {
T threshold = math::nd4j_max<T>(almostZero, precision * maxDiagElem);
if(math::nd4j_abs<T>(_m.t<T>(p,q)) > threshold || math::nd4j_abs<T>(_m.t<T>(q,p)) > threshold){
stop = false;
// if(isBlock2x2NotDiag(_m, p, q, maxDiagElem))
{
NDArray rotLeft(_m.ordering(), {2, 2}, _m.dataType(), _m.getContext());
NDArray rotRight(_m.ordering(), {2, 2}, _m.dataType(), _m.getContext());
svd2x2(_m, p, q, rotLeft, rotRight);
mulRotationOnLeft(p, q, _m, rotLeft);
if(_calcU)
mulRotationOnRight(p, q, _u, rotLeft.transpose());
mulRotationOnRight(p, q, _m, rotRight);
if(_calcV)
mulRotationOnRight(p, q, _v, rotRight);
maxDiagElem = math::nd4j_max<T>(maxDiagElem, math::nd4j_max<T>(math::nd4j_abs<T>(_m.t<T>(p,p)), math::nd4j_abs<T>(_m.t<T>(q,q))));
}
}
}
}
}
for(int i = 0; i < _diagSize; ++i) {
_s.r<T>(i) = math::nd4j_abs<T>(_m.t<T>(i,i));
if(_calcU && _m.t<T>(i,i) < (T)0.) {
auto temp = _u({0,0, i,i+1}, true);
temp.applyTransform(transform::Neg, temp, nullptr);
}
}
_s *= scale;
for(int i = 0; i < _diagSize; i++) {
int pos = (_s({i,-1, 0,0}).indexReduceNumber(indexreduce::IndexMax, nullptr)).template e<int>(0);
T maxSingVal = _s({i,-1, 0,0}).reduceNumber(reduce::Max).template t<T>(0);
if(maxSingVal == (T)0.)
break;
if(pos) {
pos += i;
math::nd4j_swap<T>(_s.r<T>(i), _s.r<T>(pos));
if(_calcU) {
auto temp1 = _u({0,0, pos,pos+1}, true);
auto temp2 = _u({0,0, i,i+1}, true);
temp1.swapUnsafe(temp2);
}
if(_calcV) {
auto temp1 = _v({0,0, pos, pos+1}, true);
auto temp2 = _v({0,0, i, i+1}, true);
temp1.swapUnsafe(temp2);
}
}
}
}
template class ND4J_EXPORT JacobiSVD<float>;
template class ND4J_EXPORT JacobiSVD<float16>;
template class ND4J_EXPORT JacobiSVD<bfloat16>;
template class ND4J_EXPORT JacobiSVD<double>;
}
}
}