520 lines
30 KiB
C++
520 lines
30 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include "mkldnnUtils.h"
|
|
|
|
using namespace dnnl;
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output,
|
|
const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW,
|
|
const int paddingMode, const bool isNCHW) {
|
|
|
|
// mkl supports only following case: mC = 1, oC = iC
|
|
|
|
// input [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given
|
|
// weights [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute
|
|
// bias [oC], may be nullptr
|
|
// output [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
|
|
// oC = iC*mC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
|
|
|
|
dnnl::memory::dims strides = { sH, sW };
|
|
dnnl::memory::dims padding = { pH, pW };
|
|
dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame };
|
|
dnnl::memory::dims dilation = { dH-1, dW-1};
|
|
|
|
// input type
|
|
dnnl::memory::data_type xType;
|
|
if(input->dataType() == DataType::FLOAT32)
|
|
xType = dnnl::memory::data_type::f32;
|
|
else if(input->dataType() == DataType::HALF)
|
|
xType = dnnl::memory::data_type::f16;
|
|
else if(input->dataType() == DataType::UINT8)
|
|
xType = dnnl::memory::data_type::u8;
|
|
else
|
|
xType = dnnl::memory::data_type::s8;
|
|
|
|
// weights type
|
|
dnnl::memory::data_type wType = xType;
|
|
if(xType == dnnl::memory::data_type::u8)
|
|
wType = dnnl::memory::data_type::s8;
|
|
|
|
// output and bias type (have the same types)
|
|
dnnl::memory::data_type zType;
|
|
if(output->dataType() == DataType::FLOAT32)
|
|
zType = dnnl::memory::data_type::f32;
|
|
else if(output->dataType() == DataType::HALF)
|
|
zType = dnnl::memory::data_type::f16;
|
|
else if(output->dataType() == DataType::UINT8)
|
|
zType = dnnl::memory::data_type::u8;
|
|
else if(output->dataType() == DataType::INT8)
|
|
zType = dnnl::memory::data_type::s8;
|
|
else
|
|
zType = dnnl::memory::data_type::s32;
|
|
|
|
dnnl::memory::format_tag xzFrmat = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::goihw;
|
|
|
|
dnnl::memory::dims xDims = {bS, iC, iH, iW};
|
|
dnnl::memory::dims wDims = {iC, mC, 1, kH, kW};
|
|
dnnl::memory::dims zDims = {bS, oC, oH, oW};
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// input
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFrmat);
|
|
if(input->ews() != 1 || input->ordering() != 'c') {
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(1); // do permutation NHWC -> NCHW
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(2);
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(3);
|
|
}
|
|
|
|
// weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
|
|
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat);
|
|
w_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(2); // permute
|
|
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3);
|
|
w_user_md.data.format_desc.blocking.strides[2] = 0;
|
|
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(0);
|
|
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(1);
|
|
|
|
// bias
|
|
dnnl::memory::desc b_mkl_md;
|
|
if(bias != nullptr)
|
|
b_mkl_md = dnnl::memory::desc({oC}, zType, dnnl::memory::format_tag::x);
|
|
|
|
// output
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xzFrmat);
|
|
if(output->ews() != 1 || output->ordering() != 'c') {
|
|
z_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
z_user_md.data.format_desc.blocking.strides[0] = output->strideAt(0);
|
|
z_user_md.data.format_desc.blocking.strides[1] = output->strideAt(1); // do permutation NHWC -> NCHW
|
|
z_user_md.data.format_desc.blocking.strides[2] = output->strideAt(2);
|
|
z_user_md.data.format_desc.blocking.strides[3] = output->strideAt(3);
|
|
}
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// operation primitive description
|
|
dnnl::convolution_forward::desc op_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto,
|
|
x_mkl_md, w_mkl_md, b_mkl_md, z_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_forward::primitive_desc op_prim_desc(op_desc, engine);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// input
|
|
auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer());
|
|
const bool xReorder = op_prim_desc.src_desc() != x_user_mem.get_desc();
|
|
auto x_mkl_mem = xReorder ? dnnl::memory(op_prim_desc.src_desc(), engine) : x_user_mem;
|
|
if (xReorder)
|
|
dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
|
|
args[DNNL_ARG_SRC] = x_mkl_mem;
|
|
|
|
// weights
|
|
auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer());
|
|
const bool wReorder = op_prim_desc.weights_desc() != w_user_mem.get_desc();
|
|
auto w_mkl_mem = wReorder ? dnnl::memory(op_prim_desc.weights_desc(), engine) : w_user_mem;
|
|
if (wReorder)
|
|
dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem);
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
// bias
|
|
if(bias != nullptr) {
|
|
auto b_mkl_mem = dnnl::memory(b_mkl_md, engine, bias->getBuffer());
|
|
args[DNNL_ARG_BIAS] = b_mkl_mem;
|
|
}
|
|
|
|
// output
|
|
auto z_user_mem = dnnl::memory(z_user_md, engine, output->getBuffer());
|
|
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
|
|
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
// run calculations
|
|
dnnl::convolution_forward(op_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (zReorder)
|
|
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
|
|
|
|
stream.wait();
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB,
|
|
const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW,
|
|
const int paddingMode, const bool isNCHW) {
|
|
|
|
// mkl supports only following case: mC = 1, oC = iC
|
|
|
|
// input, gradI [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given
|
|
// weights, gradW [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute
|
|
// gradB [oC], may be nullptr
|
|
// gradO [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
|
|
// oC = iC*mC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC);
|
|
|
|
const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d
|
|
|
|
dnnl::memory::dims strides = { sH, sW };
|
|
dnnl::memory::dims padding = { pH, pW };
|
|
dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame };
|
|
dnnl::memory::dims dilation = { dH-1, dW-1};
|
|
|
|
// input type
|
|
dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// weights type
|
|
dnnl::memory::data_type wType = weights->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradO type
|
|
dnnl::memory::data_type gradOType = gradO->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradI type
|
|
dnnl::memory::data_type gradIType = gradI->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradW type
|
|
dnnl::memory::data_type gradWType = gradW->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradB type
|
|
dnnl::memory::data_type gradBType = gradB != nullptr ? (gradB->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16) : dnnl::memory::data_type::f32;
|
|
|
|
dnnl::memory::format_tag xzFrmat = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::goihw;
|
|
|
|
dnnl::memory::dims xDims = {bS, iC, iH, iW};
|
|
dnnl::memory::dims wDims = {iC, mC, 1, kH, kW};
|
|
dnnl::memory::dims zDims = {bS, oC, oH, oW};
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// input
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFrmat);
|
|
if(input->ews() != 1 || input->ordering() != 'c') {
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
|
|
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(1);
|
|
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(2);
|
|
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(3);
|
|
}
|
|
|
|
// weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
|
|
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat);
|
|
w_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(2); // permute
|
|
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3);
|
|
w_user_md.data.format_desc.blocking.strides[2] = 0;
|
|
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(0);
|
|
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(1);
|
|
|
|
// gradO
|
|
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xzFrmat);
|
|
if(gradO->ews() != 1 || gradO->ordering() != 'c') {
|
|
gradO_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradO_user_md.data.format_desc.blocking.strides[0] = gradO->strideAt(0);
|
|
gradO_user_md.data.format_desc.blocking.strides[1] = gradO->strideAt(1);
|
|
gradO_user_md.data.format_desc.blocking.strides[2] = gradO->strideAt(2);
|
|
gradO_user_md.data.format_desc.blocking.strides[3] = gradO->strideAt(3);
|
|
}
|
|
|
|
// gradI
|
|
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xzFrmat);
|
|
if(gradI->ews() != 1 || gradI->ordering() != 'c') {
|
|
gradI_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradI_user_md.data.format_desc.blocking.strides[0] = gradI->strideAt(0);
|
|
gradI_user_md.data.format_desc.blocking.strides[1] = gradI->strideAt(1);
|
|
gradI_user_md.data.format_desc.blocking.strides[2] = gradI->strideAt(2);
|
|
gradI_user_md.data.format_desc.blocking.strides[3] = gradI->strideAt(3);
|
|
}
|
|
|
|
// gradW, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
|
|
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormat);
|
|
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(2); // permute
|
|
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(3);
|
|
gradW_user_md.data.format_desc.blocking.strides[2] = 0;
|
|
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(0);
|
|
gradW_user_md.data.format_desc.blocking.strides[4] = gradW->strideAt(1);
|
|
|
|
// gradB
|
|
dnnl::memory::desc gradB_mkl_md;
|
|
if(gradB != nullptr)
|
|
gradB_mkl_md = dnnl::memory::desc({oC}, gradBType, dnnl::memory::format_tag::x);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// forward primitive description
|
|
dnnl::convolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// backward data primitive description
|
|
dnnl::convolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::convolution_auto, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// backward weights primitive description
|
|
dnnl::convolution_backward_weights::desc op_weights_bp_desc(dnnl::algorithm::convolution_auto, x_mkl_md, gradW_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_backward_weights::primitive_desc op_weights_bp_prim_desc(op_weights_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// input
|
|
auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer());
|
|
const bool xReorder = op_weights_bp_prim_desc.src_desc() != x_user_mem.get_desc();
|
|
auto x_mkl_mem = xReorder ? dnnl::memory(op_weights_bp_prim_desc.src_desc(), engine) : x_user_mem;
|
|
if (xReorder)
|
|
dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
|
|
args[DNNL_ARG_SRC] = x_mkl_mem;
|
|
|
|
// weights
|
|
auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer());
|
|
const bool wReorder = op_data_bp_prim_desc.weights_desc() != w_user_mem.get_desc();
|
|
auto w_mkl_mem = wReorder ? dnnl::memory(op_data_bp_prim_desc.weights_desc(), engine) : w_user_mem;
|
|
if (wReorder)
|
|
dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem);
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
// gradO
|
|
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, gradO->getBuffer());
|
|
const bool gradOReorderW = op_weights_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
|
|
const bool gradOReorderD = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
|
|
auto gradO_mkl_memW = gradOReorderW ? dnnl::memory(op_weights_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
|
|
auto gradO_mkl_memD = gradOReorderD ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
|
|
if (gradOReorderW)
|
|
dnnl::reorder(gradO_user_mem, gradO_mkl_memW).execute(stream, gradO_user_mem, gradO_mkl_memW);
|
|
if (gradOReorderD)
|
|
dnnl::reorder(gradO_user_mem, gradO_mkl_memD).execute(stream, gradO_user_mem, gradO_mkl_memD);
|
|
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
|
|
|
|
// gradI
|
|
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer());
|
|
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
|
|
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
|
|
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
|
|
|
|
// gradW
|
|
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->getBuffer());
|
|
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
|
|
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
|
|
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
|
|
|
|
// gradB
|
|
if(gradB != nullptr) {
|
|
auto gradB_mkl_mem = dnnl::memory(gradB_mkl_md, engine, gradB->getBuffer());
|
|
args[DNNL_ARG_DIFF_BIAS] = gradB_mkl_mem;
|
|
}
|
|
|
|
// run backward data calculations
|
|
dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args);
|
|
|
|
if(gradOReorderW || gradOReorderD)
|
|
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memW;
|
|
|
|
// run backward weights calculations
|
|
dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
|
|
|
|
// reorder gradI if necessary
|
|
if (gradIReorder)
|
|
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem);
|
|
if (gradWReorder)
|
|
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(depthwise_conv2d, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
REQUIRE_TRUE(output->sizeAt(indIOioC) == iC*mC, 0, "CUSTOM DEPTHWISECONV2D MKL OP: the output_channels must be equal to input_channels * channels_multiplier = %i !", iC*mC);
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
depthwiseConv2dMKLDNN(input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(depthwise_conv2d, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto weights = INPUT_VARIABLE(1);
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr;
|
|
|
|
auto output = INPUT_VARIABLE(0);
|
|
|
|
const DataType xType = input->dataType();
|
|
const DataType wType = weights->dataType();
|
|
const DataType zType = output->dataType();
|
|
const DataType bType = bias != nullptr ? bias->dataType() : zType;
|
|
|
|
const int mC = weights->sizeAt(3);
|
|
|
|
return block.isUseMKLDNN() && mC == 1 &&
|
|
(
|
|
(xType==DataType::FLOAT32 && wType==DataType::FLOAT32 && bType==DataType::FLOAT32 && zType==DataType::FLOAT32) ||
|
|
(xType==DataType::BFLOAT16 && wType==DataType::BFLOAT16 && bType==DataType::BFLOAT16 && zType==DataType::BFLOAT16) ||
|
|
((xType==DataType::UINT8 || xType==DataType::INT8) && wType==DataType::INT8 && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32) && bType == zType)
|
|
);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(depthwise_conv2d_bp, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf());
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
int trueoH, trueoW; // correct output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, paddingMode);
|
|
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1});
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, mC};
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
depthwiseConv2dNackPropMKLDNN(input, weights, gradO, gradI, gradW, gradB, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(depthwise_conv2d_bp, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
const DataType xType = input->dataType();
|
|
const DataType wType = weights->dataType();
|
|
const DataType gradOType = gradO->dataType();
|
|
|
|
const DataType gradIType = gradI->dataType();
|
|
const DataType gradWType = gradW->dataType();
|
|
const DataType gradBType = gradB != nullptr ? gradB->dataType() : DataType::FLOAT32;
|
|
|
|
const int mC = weights->sizeAt(3);
|
|
|
|
return block.isUseMKLDNN() && mC == 1 && ((xType==DataType::FLOAT32 || xType==DataType::BFLOAT16) && (wType==DataType::FLOAT32 || wType==DataType::BFLOAT16) && (gradOType==DataType::FLOAT32 || gradOType==DataType::BFLOAT16) && (gradIType==DataType::FLOAT32 || gradIType==DataType::BFLOAT16) && (gradWType==DataType::FLOAT32 || gradWType==DataType::BFLOAT16) && (gradBType==DataType::FLOAT32 || gradBType==DataType::BFLOAT16) );
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|