245 lines
13 KiB
C++
245 lines
13 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void deconv2TFdBackPropMKLDNN(const NDArray* weights, const NDArray* gradO, NDArray* gradI,
|
|
const int bS, const int iC, const int iH, const int iW, const int oC, const int oH, const int oW,
|
|
const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW,
|
|
const bool isNCHW) {
|
|
|
|
// gradI [bS, iH, iW, iC], mkl doesn't support ndhwc format
|
|
// weights [oC, iC, kH, kW] always, mkl doesn't support weights format [kH, kW, iC, oC]
|
|
// gradO [bS, oH, oW, oC]
|
|
|
|
dnnl::memory::dims strides = { sH, sW };
|
|
dnnl::memory::dims dilation = { dH - 1, dW - 1 };
|
|
dnnl::memory::dims padding = { pH, pW };
|
|
dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pW };
|
|
|
|
// weights type
|
|
dnnl::memory::data_type wType = weights->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradO type
|
|
dnnl::memory::data_type gradOType = gradO->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
// gradI type
|
|
dnnl::memory::data_type gradIType = gradI->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
|
|
|
|
dnnl::memory::format_tag xFormat = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::oihw;
|
|
|
|
dnnl::memory::dims xDims = {bS, iC, iH, iW};
|
|
dnnl::memory::dims wDims = {oC, iC, kH, kW};
|
|
dnnl::memory::dims zDims = {bS, oC, oH, oW};
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// input
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, gradOType, dnnl::memory::format_tag::any);
|
|
|
|
// weights
|
|
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat);
|
|
w_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(3); // permute [kH, kW, iC, oC] -> [oC, iC, kH, kW]
|
|
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(2);
|
|
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(0);
|
|
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(1);
|
|
|
|
// gradO
|
|
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormat);
|
|
if(gradO->ews() != 1 || gradO->ordering() != 'c') {
|
|
gradO_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradO_user_md.data.format_desc.blocking.strides[0] = gradO->strideAt(0);
|
|
gradO_user_md.data.format_desc.blocking.strides[1] = gradO->strideAt(1);
|
|
gradO_user_md.data.format_desc.blocking.strides[2] = gradO->strideAt(2);
|
|
gradO_user_md.data.format_desc.blocking.strides[3] = gradO->strideAt(3);
|
|
}
|
|
|
|
// gradI
|
|
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormat);
|
|
if(gradI->ews() != 1 || gradI->ordering() != 'c') {
|
|
gradI_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
gradI_user_md.data.format_desc.blocking.strides[0] = gradI->strideAt(0);
|
|
gradI_user_md.data.format_desc.blocking.strides[1] = gradI->strideAt(1);
|
|
gradI_user_md.data.format_desc.blocking.strides[2] = gradI->strideAt(2);
|
|
gradI_user_md.data.format_desc.blocking.strides[3] = gradI->strideAt(3);
|
|
}
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// forward primitive description
|
|
dnnl::convolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// backward data primitive description
|
|
dnnl::convolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::convolution_auto, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r);
|
|
dnnl::convolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// weights
|
|
auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer());
|
|
const bool wReorder = op_data_bp_prim_desc.weights_desc() != w_user_mem.get_desc();
|
|
auto w_mkl_mem = wReorder ? dnnl::memory(op_data_bp_prim_desc.weights_desc(), engine) : w_user_mem;
|
|
if (wReorder)
|
|
dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem);
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
// gradO
|
|
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, gradO->getBuffer());
|
|
const bool gradOReorder = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc();
|
|
auto gradO_mkl_mem = gradOReorder ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem;
|
|
if (gradOReorder)
|
|
dnnl::reorder(gradO_user_mem, gradO_mkl_mem).execute(stream, gradO_user_mem, gradO_mkl_mem);
|
|
args[DNNL_ARG_DIFF_DST] = gradO_mkl_mem;
|
|
|
|
// gradI
|
|
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer());
|
|
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
|
|
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
|
|
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
|
|
|
|
// run backward data calculations
|
|
dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args);
|
|
|
|
// reorder gradI if necessary
|
|
if (gradIReorder)
|
|
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(deconv2d_tf, ENGINE_CPU) {
|
|
|
|
auto gradO = INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC] always
|
|
auto gradIShape = INPUT_VARIABLE(0); // [4] - shape of input of conv2d (that is shape of gradI)
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
|
|
const int rank = gradO->rankOf();
|
|
|
|
REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM DECONV2D_TF MKLDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradIShape->rankOf() == 1, 0, "CUSTOM DECONV2D_TF MKLDNN OP: rank of array with output shape must be equal to 1, but got %i instead !", gradIShape->rankOf());
|
|
REQUIRE_TRUE(gradIShape->lengthOf() == rank, 0, "CUSTOM DECONV2D_TF MKLDNN OP: length of array with output shape must be equal to 4, but got %i instead !", gradIShape->lengthOf());
|
|
|
|
int indIOioC, indIiH, indWoC(3), indOoH;
|
|
if(!isNCHW) {
|
|
indIOioC = 3; indIiH = 1; indOoH = 1;
|
|
}
|
|
else {
|
|
indIOioC = 1; indIiH = 2; indOoH = 2;
|
|
}
|
|
|
|
std::vector<Nd4jLong> gradIShapeVector = gradIShape->template asVectorT<Nd4jLong>();
|
|
|
|
const int bS = gradIShapeVector[0]; // batch size
|
|
const int iH = gradIShapeVector[indIiH]; // input height
|
|
const int iW = gradIShapeVector[indIiH+1]; // input width
|
|
const int iC = gradIShapeVector[indIOioC]; // input channels
|
|
const int oC = weights->sizeAt(indWoC); // output channels
|
|
const int oH = gradO->sizeAt(indOoH); // input height
|
|
const int oW = gradO->sizeAt(indOoH); // input width
|
|
|
|
int trueoH, trueoW; // true output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1});
|
|
std::vector<Nd4jLong> expectedWeightsShape = {kH, kW, iC, oC};
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DECONV2D_TF MKLDNN OP: wrong shape of input array, basing on array with output shape expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV2D_TF MKLDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
|
|
if(isSameMode) // SAME
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
|
|
|
|
// // mkl supports only [oC, iC, kH, kW] for weights
|
|
// weights = new NDArray(weights->permute({3,2,0,1})); // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
|
|
|
|
// // mkl supports NCHW format only
|
|
// if(!isNCHW) {
|
|
// gradI = new NDArray(gradI->permute({0,3,1,2})); // [bS, iH, iW, iC] -> [bS, iC, iH, iW]
|
|
// gradO = new NDArray(gradO->permute({0,3,1,2})); // [bS, oH, oW, oC] -> [bS, oC, oH, oW]
|
|
// }
|
|
|
|
deconv2TFdBackPropMKLDNN(weights, gradO, gradI, bS, iC, iH, iW, oC, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW);
|
|
|
|
// delete weights;
|
|
|
|
// if(!isNCHW) {
|
|
// delete gradI;
|
|
// delete gradO;
|
|
// }
|
|
|
|
// ConvolutionUtils::conv2dBP(block, &input, weights, nullptr, gradO, gradI, nullptr, nullptr, kH,kW,sH,sW,pH,pW,dH,dW,isSameMode,isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(deconv2d_tf, ENGINE_CPU) {
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC] always
|
|
auto gradO = INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCDHW), gradI
|
|
|
|
|
|
const DataType wType = weights->dataType();
|
|
const DataType gradOType = gradO->dataType();
|
|
const DataType gradIType = gradI->dataType();
|
|
|
|
return block.isUseMKLDNN() && ((wType==DataType::FLOAT32 || wType==DataType::BFLOAT16) && (gradOType==DataType::FLOAT32 || gradOType==DataType::BFLOAT16) && (gradIType==DataType::FLOAT32 || gradIType==DataType::BFLOAT16));
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|