88d3c4867f
* Refactor nd4j-common: org.nd4j.* -> org.nd4j.common.* Signed-off-by: Alex Black <blacka101@gmail.com> * Fix CUDA (missed nd4j-common package refactoring changes) Signed-off-by: Alex Black <blacka101@gmail.com> * nd4j-kryo: org.nd4j -> org.nd4j.kryo Signed-off-by: Alex Black <blacka101@gmail.com> * Fix nd4j-common for deeplearning4j-cuda Signed-off-by: Alex Black <blacka101@gmail.com> * nd4j-grppc-client: org.nd4j.graph -> org.nd4j.remote.grpc Signed-off-by: Alex Black <blacka101@gmail.com> * deeplearning4j-common: org.deeplearning4.* -> org.deeplearning4j.common.* Signed-off-by: Alex Black <blacka101@gmail.com> * deeplearning4j-core: org.deeplearning4j.* -> org.deeplearning.core.* Signed-off-by: Alex Black <blacka101@gmail.com> * deeplearning4j-cuda: org.deeplearning4j.nn.layers.* -> org.deeplearning4j.cuda.* Signed-off-by: Alex Black <blacka101@gmail.com> * Import fixes Signed-off-by: Alex Black <blacka101@gmail.com> * deeplearning4j-nlp-*: org.deeplearning4.text.* -> org.deeplearning4j.nlp.(language).* Signed-off-by: Alex Black <blacka101@gmail.com> * deeplearning4j-ui-model: org.deeplearning4j.ui -> org.deeplearning4j.ui.model Signed-off-by: Alex Black <blacka101@gmail.com> * datavec-spark-inference-{server/model/client}: org.datavec.spark.transform -> org.datavec.spark.inference.{server/model/client} Signed-off-by: Alex Black <blacka101@gmail.com> * datavec-jdbc: org.datavec.api -> org.datavec.jdbc Signed-off-by: Alex Black <blacka101@gmail.com> * Delete org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter in favor of (essentially identical) org.nd4j.linalg.dataset.adapter.MultiDataSetIteratorAdapter Signed-off-by: Alex Black <blacka101@gmail.com> * ND4S fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Fixes Signed-off-by: Alex Black <blacka101@gmail.com> * nd4j-common-tests: org.nd4j.* -> org.nd4j.common.tests Signed-off-by: Alex Black <blacka101@gmail.com> * Trigger CI Signed-off-by: Alex Black <blacka101@gmail.com> * Fixes Signed-off-by: Alex Black <blacka101@gmail.com> * #8878 Ignore CUDA tests on modules with 'nd4j-native under cuda' issue Signed-off-by: Alex Black <blacka101@gmail.com> * Fix bad imports in tests Signed-off-by: Alex Black <blacka101@gmail.com> * Add ignore on test (already failing) due to #8882 Signed-off-by: Alex Black <blacka101@gmail.com> * Import fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Additional import fixes Signed-off-by: Alex Black <blacka101@gmail.com> |
||
---|---|---|
.. | ||
ci | ||
contrib | ||
nd4j-backends | ||
nd4j-common | ||
nd4j-common-tests | ||
nd4j-jdbc | ||
nd4j-parameter-server-parent | ||
nd4j-remote | ||
nd4j-serde | ||
nd4j-shade | ||
nd4j-tensorflow | ||
nd4j-uberjar | ||
.appveyor.yml | ||
.codeclimate.yml | ||
.gitignore | ||
.travis.yml | ||
LICENSE | ||
README.md | ||
RaspberryPi.md | ||
VERSION | ||
buildAllversions.sh | ||
buildmultiplescalaversions.sh | ||
pom.xml |
README.md
ND4J: Scientific Computing on the JVM
ND4J is an Apache 2.0-licensed scientific computing library for the JVM. By contributing code to this repository, you agree to make your contribution available under an Apache 2.0 license.
It is meant to be used in production environments rather than as a research tool, which means routines are designed to run fast with minimum RAM requirements.
Please search for the latest version on search.maven.org.
Or use the versions displayed in: https://github.com/eclipse/deeplearning4j-examples/blob/master/pom.xml
Main Features
- Versatile n-dimensional array object
- Multiplatform functionality including GPUs
- Linear algebra and signal processing functions
Specifics
- Supports GPUs via with the CUDA backend nd4j-cuda-7.5 and Native via nd4j-native.
- All of this is wrapped in a unifying interface.
- The API mimics the semantics of Numpy, Matlab and scikit-learn.
Documentation
Documentation is available at deeplearning4j.org. Access the JavaDocs for more detail.
Installation
To install ND4J, there are a couple of approaches, and more information can be found on the DL4J website.
Install from Maven Central
- Search for nd4j in the Maven Central Repository to find the available nd4j jars.
- Include the appropriate dependency in your pom.xml.
Clone from the GitHub Repo
https://deeplearning4j.org/docs/latest/deeplearning4j-build-from-source
Contribute
-
Check for open issues, or open a new issue to start a discussion around a feature idea or a bug.
-
If you feel uncomfortable or uncertain about an issue or your changes, feel free to contact us on Gitter using the link above.
-
Fork the repository on GitHub to start making your changes to the master branch (or branch off of it).
-
Write a test, which shows that the bug was fixed or that the feature works as expected.
-
Note the repository follows the Google Java style with two modifications: 120-char column wrap and 4-spaces indentation. You can format your code to this format by typing
mvn formatter:format
in the subproject you work on, by using thecontrib/formatter.xml
at the root of the repository to configure the Eclipse formatter, or by using the INtellij plugin. -
Send a pull request, and bug us on Gitter until it gets merged and published.