cavis/libnd4j/include/ops/declarable/helpers/cpu/scatter.cpp

153 lines
5.5 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/scatter.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
#include <execution/Threads.h>
namespace nd4j {
namespace ops {
namespace helpers {
void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const int outRank = output.rankOf();
const int indRank = indices.rankOf();
const int updRank = updates.rankOf();
const Nd4jLong indLen = indices.lengthOf();
if(outRank == 1) {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i += increment) {
Nd4jLong idx = indices.e<Nd4jLong>(i);
NDArray out = output({idx, idx + 1});
out.applyPairwiseTransform(op, updates.e(i), nullptr);
}
};
samediff::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : nd4j::Environment::getInstance()->maxThreads());
}
else { // outRank > 1
int sizeOfDims = indRank;
if(outRank == updRank && indices.isVector())
sizeOfDims = 1;
std::vector<int> dimsToExcludeUpd(sizeOfDims);
std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i += increment) {
NDArray outSubArr = output(indices.e<Nd4jLong>(i), std::vector<int>({0}));
NDArray updSubArr = updates(i, dimsToExcludeUpd);
outSubArr.applyPairwiseTransform(op, updSubArr, nullptr);
}
};
samediff::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : nd4j::Environment::getInstance()->maxThreads());
}
}
///////////////////////////////////////////////////////////////////
void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const Nd4jLong indLen = indices.lengthOf();
const int outRank = output.rankOf();
const int indRank = indices.rankOf();
const Nd4jLong indLastDim = indices.sizeAt(-1);
if(outRank == 1) {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i += increment) {
Nd4jLong idx = indices.e<Nd4jLong>(i);
NDArray out = output({idx, idx + 1});
out.applyPairwiseTransform(op, updates.e(i), nullptr);
}
};
samediff::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : nd4j::Environment::getInstance()->maxThreads());
}
else {
std::vector<int> dimsToExcludeInd = ShapeUtils::evalDimsToExclude(indRank, {indRank-1});
std::vector<int> dimsToExcludeUpd(indRank - 1);
std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0);
auto func = PRAGMA_THREADS_FOR {
std::vector<Nd4jLong> idxRangeOut(2*outRank, 0);
for (auto i = start; i < stop; i += increment) {
NDArray indSubArr = indices(i, dimsToExcludeInd);
for (Nd4jLong j = 0; j < indLastDim; ++j) {
idxRangeOut[2 * j] = indSubArr.e<Nd4jLong>(j);
idxRangeOut[2 * j + 1] = idxRangeOut[2 * j] + 1;
}
NDArray outSubArr = output(idxRangeOut);
NDArray updSubArr = updates(i, dimsToExcludeUpd);
outSubArr.applyPairwiseTransform(op, updSubArr, nullptr);
}
};
samediff::Threads::parallel_tad(func, 0, indLen / indLastDim, 1, lock ? 1 : nd4j::Environment::getInstance()->maxThreads());
}
}
void scatterForLoss(nd4j::LaunchContext *context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) {
// shapes of indices and output must be the same
// shape of indices should be the same as updates shape with last dimension excluded
// for example if updates is {a,b,c} then indices should be {a,b}
const Nd4jLong indicesLen = indices.lengthOf();
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(updates.rankOf(), {-1});
if(!calcGrad) {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i += increment) {
auto subArr = updates(i, dimsToExclude);
output.p(i, subArr.e(indices.e<Nd4jLong>(i)));
}
};
samediff::Threads::parallel_for(func, 0, indicesLen);
} else {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i += increment) {
auto subArr = updates(i, dimsToExclude);
auto ind = indices.e<Nd4jLong>(i);
subArr.p(ind, subArr.e(ind) - 1.);
}
};
samediff::Threads::parallel_for(func, 0, indicesLen);
}
}
}
}
}