302 lines
13 KiB
C++
302 lines
13 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <numeric>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const bool transX, const bool transY, float alpha = 1.f, float beta = 0.f) {
|
|
|
|
// mkl works with following
|
|
// [M,K] x [K,N] = [M,N]
|
|
// [bS, M,K] x [bS, K,N] = [bS, M,N]
|
|
|
|
// possible input cases not supported by mkl, however we'll perform permut/reshape procedures in order to fit requirements
|
|
// [4] x [4] = [1] --> [1,4] x [4,1] = [1,1]
|
|
// [4] x [4,5] = [5] --> [1,4] x [4,5] = [1,5]
|
|
// [4,5] x [5] = [4] --> [4,5] x [5,1] = [4,1]
|
|
// [2,3, 4,5] x [2,3, 5,4] = [2,3, 4,4] --> [6, 4,5] x [6, 5,4] = [6, 4,4]
|
|
// [2,2,3, 4,5] x [2,2,3, 5,4] = [2,2,3, 4,4] --> [12, 4,5] x [12, 5,4] = [12, 4,4]
|
|
|
|
const auto xRank = x->rankOf();
|
|
const auto yRank = y->rankOf();
|
|
const auto zRank = z->rankOf();
|
|
|
|
std::vector<int> permut;
|
|
|
|
// fill permutation vector appropriately if transposition is required
|
|
if((transX && xRank > 1) || (transY && yRank > 1)) {
|
|
|
|
const int rank = xRank >= yRank ? xRank : yRank;
|
|
permut.resize(rank);
|
|
std::iota(std::begin(permut), std::end(permut), 0);
|
|
permut[rank-2] = rank - 1;
|
|
permut[rank-1] = rank - 2;
|
|
}
|
|
|
|
const NDArray* xT = (transX && xRank > 1) ? new NDArray(x->permute(permut)) : x;
|
|
const NDArray* yT = (transY && yRank > 1) ? new NDArray(y->permute(permut)) : y;
|
|
|
|
const NDArray* xTR = xRank <= 3 ? xT : new NDArray(xT->reshape(xT->ordering(), {xT->lengthOf() / (xT->sizeAt(-2) * xT->sizeAt(-1)), xT->sizeAt(-2), xT->sizeAt(-1)}));
|
|
const NDArray* yTR = xRank <= 3 ? yT : new NDArray(yT->reshape(yT->ordering(), {yT->lengthOf() / (yT->sizeAt(-2) * yT->sizeAt(-1)), yT->sizeAt(-2), yT->sizeAt(-1)}));
|
|
NDArray* zR = xRank <= 3 ? z : new NDArray(z->reshape(z->ordering(), {z->lengthOf() / (z->sizeAt(-2) * z->sizeAt(-1)), z->sizeAt(-2), z->sizeAt(-1)})/*, false*/);
|
|
|
|
// [M,K] x [K,N] = [M,N]
|
|
const int64_t M = (xRank > 1) ? xTR->sizeAt(-2) : 1;
|
|
const int64_t K = (xRank > 1) ? xTR->sizeAt(-1) : xTR->lengthOf();
|
|
const int64_t N = (yRank > 1) ? yTR->sizeAt(-1) : 1;
|
|
const int64_t bS = (xRank > 2) ? xTR->sizeAt(0) : 1; // [bS, M,K] x [bS, K,N] = [bS, M,N]
|
|
|
|
dnnl::memory::dims xShape = xRank < 3 ? dnnl::memory::dims({M, K}) : dnnl::memory::dims({bS, M, K});
|
|
dnnl::memory::dims yShape = xRank < 3 ? dnnl::memory::dims({K, N}) : dnnl::memory::dims({bS, K, N});
|
|
dnnl::memory::dims zShape = xRank < 3 ? dnnl::memory::dims({M, N}) : dnnl::memory::dims({bS, M, N});
|
|
|
|
// x type
|
|
dnnl::memory::data_type xType;
|
|
if(x->dataType() == DataType::FLOAT32)
|
|
xType = dnnl::memory::data_type::f32;
|
|
else if(x->dataType() == DataType::HALF)
|
|
xType = dnnl::memory::data_type::f16;
|
|
else if(x->dataType() == DataType::BFLOAT16)
|
|
xType = dnnl::memory::data_type::bf16;
|
|
else if(x->dataType() == DataType::UINT8)
|
|
xType = dnnl::memory::data_type::u8;
|
|
else
|
|
xType = dnnl::memory::data_type::s8;
|
|
|
|
// y type
|
|
dnnl::memory::data_type yType = xType;
|
|
if(y->dataType() == DataType::UINT8)
|
|
yType = dnnl::memory::data_type::u8;
|
|
else if(y->dataType() == DataType::INT8)
|
|
yType = dnnl::memory::data_type::s8;
|
|
|
|
// z type
|
|
dnnl::memory::data_type zType = xType;
|
|
if(z->dataType() == DataType::FLOAT32)
|
|
zType = dnnl::memory::data_type::f32;
|
|
else if(z->dataType() == DataType::INT32)
|
|
zType = dnnl::memory::data_type::s32;
|
|
else if(z->dataType() == DataType::UINT8)
|
|
zType = dnnl::memory::data_type::u8;
|
|
else if(z->dataType() == DataType::INT8)
|
|
zType = dnnl::memory::data_type::s8;
|
|
|
|
|
|
const auto xFormat = xRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*xTR);
|
|
const auto yFormat = yRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*yTR);
|
|
const auto zFormat = zRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*zR);
|
|
|
|
// memory descriptors for arrays
|
|
dnnl::memory::desc x_mkl_md, x_user_md, y_mkl_md, y_user_md, z_mkl_md, z_user_md;
|
|
|
|
// x
|
|
x_user_md = x_mkl_md = dnnl::memory::desc(xShape, xType, xFormat);
|
|
if(xTR->ews() != 1) {
|
|
x_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
x_user_md.data.format_desc.blocking.strides[0] = xRank == 1 ? 1 : xTR->strideAt(0);
|
|
x_user_md.data.format_desc.blocking.strides[1] = xRank == 1 ? xTR->strideAt(0) : xTR->strideAt(1);
|
|
if(xRank > 2)
|
|
x_user_md.data.format_desc.blocking.strides[2] = xTR->strideAt(2);
|
|
}
|
|
|
|
// y
|
|
y_user_md = y_mkl_md = dnnl::memory::desc(yShape, yType, yFormat);
|
|
if(yTR->ews() != 1) {
|
|
y_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
y_user_md.data.format_desc.blocking.strides[0] = yRank == 1 ? 1 : yTR->strideAt(0);
|
|
y_user_md.data.format_desc.blocking.strides[1] = yRank == 1 ? yTR->strideAt(0) : yTR->strideAt(1);
|
|
if(yRank > 2)
|
|
y_user_md.data.format_desc.blocking.strides[2] = yTR->strideAt(2);
|
|
}
|
|
|
|
// z
|
|
z_user_md = z_mkl_md = dnnl::memory::desc(zShape, zType, zFormat);
|
|
if(zR->ews() != 1) {
|
|
z_user_md.data.format_kind = dnnl_blocked; // overrides format
|
|
z_user_md.data.format_desc.blocking.strides[0] = zRank == 1 ? 1 : zR->strideAt(0);
|
|
z_user_md.data.format_desc.blocking.strides[1] = zRank == 1 ? zR->strideAt(0) : zR->strideAt(1);
|
|
if(zRank > 2)
|
|
z_user_md.data.format_desc.blocking.strides[2] = zR->strideAt(2);
|
|
}
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// Create attributes (to handle alpha and beta if necessary)
|
|
dnnl::primitive_attr attr; // it is empty since we have usual values for alpha (=1) and beta (=0)
|
|
if (alpha != 1.f) attr.set_output_scales(0, {alpha});
|
|
if (beta != 0.f) {
|
|
dnnl::post_ops po;
|
|
po.append_sum(beta);
|
|
attr.set_post_ops(po);
|
|
}
|
|
|
|
// operation primitive description
|
|
dnnl::matmul::desc op_desc(x_mkl_md, y_mkl_md, z_mkl_md);
|
|
dnnl::matmul::primitive_desc op_prim_desc(op_desc, attr, engine);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory buffers and check whether reorder is required
|
|
|
|
// input
|
|
mkldnnUtils::loadDataToMklStream(*xTR, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
// y
|
|
mkldnnUtils::loadDataToMklStream(*yTR, engine, stream, y_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
|
|
|
|
// z
|
|
auto z_user_mem = mkldnnUtils::loadDataToMklStream(*zR, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
|
|
|
|
// run calculations
|
|
dnnl::matmul(op_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
|
|
dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
if(zR->buffer() != z->buffer())
|
|
z->assign(zR);
|
|
|
|
if(zR != z)
|
|
delete zR;
|
|
if(xTR != xT)
|
|
delete xTR;
|
|
if(xT != x)
|
|
delete xT;
|
|
if(yTR != yT)
|
|
delete yTR;
|
|
if(yT != y)
|
|
delete yT;
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(matmul, ENGINE_CPU) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
auto y = INPUT_VARIABLE(1);
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
if(x->isEmpty() || y->isEmpty())
|
|
return Status::OK();
|
|
|
|
int iSize = (int) block.getIArguments()->size();
|
|
int transX = iSize > 0 ? INT_ARG(0) : 0;
|
|
int transY = iSize > 1 ? INT_ARG(1) : 0;
|
|
const int transZ = iSize > 2 ? INT_ARG(2) : 0;
|
|
|
|
// optional use alpha nad beta
|
|
iSize = (int)block.getTArguments()->size();
|
|
float alpha = iSize > 0 ? T_ARG(0) : 1.0;
|
|
float beta = iSize > 1 ? T_ARG(1) : 0.0;
|
|
|
|
const int xRank = x->rankOf();
|
|
const int yRank = y->rankOf();
|
|
const int zRank = z->rankOf();
|
|
|
|
if (transZ) {
|
|
x = INPUT_VARIABLE(1);
|
|
y = INPUT_VARIABLE(0);
|
|
bool temp = transX;
|
|
transX = !transY;
|
|
transY = !temp;
|
|
}
|
|
|
|
const int xLastDim = transX ? -2 : -1;
|
|
const int yLastDim = transY ? -2 : -1;
|
|
const int xLastButOneDim = transX ? -1 : -2;
|
|
const int yLastButOneDim = transY ? -1 : -2;
|
|
|
|
// ******* input validation ******* //
|
|
REQUIRE_TRUE(xRank > 0 && yRank > 0, 0, "MATMUL MKLDNN OP: input arrays must have rank bigger than 0 (should not be scalars), but got instead: x rank = %i, y rank = %i !", xRank, yRank);
|
|
|
|
if (xRank == 1 && yRank == 1) { // dot case, output is scalar (or vector with length = 1)
|
|
REQUIRE_TRUE(x->lengthOf() == y->lengthOf(), 0,"MATMUL MKLDNN OP: since input arrays are vectors they must have the same length, but got x length = %i, y length = %i !",x->lengthOf(), y->lengthOf());
|
|
} else if (xRank == 1 && yRank == 2) { // vector x matrix, i.e. [4] x [4,5] = [5], output is vector
|
|
REQUIRE_TRUE(x->lengthOf() == y->sizeAt(yLastButOneDim), 0, "MATMUL MKLDNN OP: input arrays have inconsistent shapes for vector-matrix product: x %s, y %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str());
|
|
} else if (xRank == 2 && yRank == 1) { // matrix x vector , i.e. [4,5] x [5] = [4], output is vector
|
|
REQUIRE_TRUE(x->sizeAt(xLastDim) == y->lengthOf(), 0, "MATMUL MKLDNN OP: input arrays have inconsistent shapes for matrix-vector product: x %s, y %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str());
|
|
} else {
|
|
REQUIRE_TRUE(xRank == yRank && yRank == zRank, 0, "MATMUL MKLDNN OP: input and output arrays must have the same rank, but got instead: x rank = %i, y rank = %i, z rank = %i !", xRank, yRank, zRank);
|
|
REQUIRE_TRUE(x->sizeAt(xLastDim) == y->sizeAt(yLastButOneDim) && x->sizeAt(xLastButOneDim) == z->sizeAt(-2) && y->sizeAt(yLastDim) == z->sizeAt(-1), 0, "MATMUL MKLDNN OP: input/output arrays have inconsistent shapes for matrix product: x %s, y %s, z %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str(), ShapeUtils::shapeAsString(z).c_str());
|
|
|
|
if (xRank > 2) // outer dims must be the same
|
|
for (int i = 0; i < xRank - 2; ++i)
|
|
REQUIRE_TRUE(x->sizeAt(i) == y->sizeAt(i) && y->sizeAt(i) == z->sizeAt(i), 0, "MATMUL MKLDNN OP: input/output arrays have inconsistent shapes for matrix product: x %s, y %s, z %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str(), ShapeUtils::shapeAsString(z).c_str());
|
|
}
|
|
// ******* end of input validation ******* //
|
|
|
|
matmulMKLDNN(x, y, z, transX, transY, alpha, beta);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(matmul, ENGINE_CPU) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
auto y = INPUT_VARIABLE(1);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
const auto xType = x->dataType();
|
|
const auto yType = y->dataType();
|
|
const auto zType = z->dataType();
|
|
|
|
float alpha = block.numT() > 0 ? T_ARG(0) : 1.0f;
|
|
float beta = block.numT() > 1 ? T_ARG(1) : 0.0f;
|
|
|
|
// we're skipping if result order is F or arrays are not continuous
|
|
bool skip2D = z->rankOf() == 2 && (z->ordering() == 'f' || x->ews() != 1 || y->ews() != 1 || z->ews() != 1);
|
|
|
|
// we're skipping 3D cases if they are not C continuoys
|
|
bool skip3D = z->rankOf() == 3 && (x->ordering() == 'f' || y->ordering() == 'f' || z->ordering() == 'f' || x->ews() != 1 || y->ews() != 1 || z->ews() != 1);
|
|
|
|
return !skip2D && !skip3D && block.isUseMKLDNN() && x->rankOf() < 3 &&
|
|
(
|
|
(xType==DataType::FLOAT32 && yType==DataType::FLOAT32 && zType==DataType::FLOAT32) ||
|
|
(xType==DataType::HALF && yType==DataType::HALF && zType==DataType::FLOAT32) ||
|
|
(xType==DataType::BFLOAT16 && yType==DataType::BFLOAT16 && zType==DataType::BFLOAT16) ||
|
|
((xType==DataType::UINT8 || xType==DataType::INT8) && (yType==DataType::UINT8 || yType==DataType::INT8) && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32))
|
|
);
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|