172 lines
8.2 KiB
C++
172 lines
8.2 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 16.10.2017.
|
|
//
|
|
|
|
#include <ops/declarable/LegacyReduceFloatOp.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <graph/Status.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <array/DataTypeUtils.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
LegacyReduceFloatOp::LegacyReduceFloatOp() : LegacyOp::LegacyOp(1) {
|
|
//
|
|
}
|
|
|
|
LegacyReduceFloatOp::LegacyReduceFloatOp(int opNum) : LegacyOp::LegacyOp(1, opNum) {
|
|
//this->_opNum = opNum;
|
|
}
|
|
|
|
LegacyOp* LegacyReduceFloatOp::clone() {
|
|
return new LegacyReduceFloatOp(this->_opNum);
|
|
}
|
|
|
|
Nd4jStatus LegacyReduceFloatOp::validateAndExecute(Context &block) {
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
NDArray::prepareSpecialUse({z}, {x});
|
|
|
|
int opNum = block.opNum() < 0 ? this->_opNum : block.opNum();
|
|
nd4j_debug("Executing LegacyReduceFloatOp: [%i]\n", opNum);
|
|
|
|
bool allAxes = false;
|
|
auto axis = *block.getAxis();
|
|
|
|
ExtraArguments extras(*block.getTArguments());
|
|
PointersManager manager(block.launchContext(), "LegacyReduceFloatOp");
|
|
|
|
if (block.width() == 1) {
|
|
|
|
if (axis.size() == x->rankOf())
|
|
allAxes = true;
|
|
|
|
// _axis.(block.getIArguments()->size() == 0) ||
|
|
// (block.getIArguments()->size() == 1 && INT_ARG(0) == sd::DataTypeUtils::max<int>())
|
|
if (block.getAxis()->empty() || allAxes) {
|
|
// scalar
|
|
NativeOpExecutioner::execReduceFloatScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(),
|
|
extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo());
|
|
} else {
|
|
// TAD
|
|
std::vector<int> dims(*block.getAxis());
|
|
|
|
for (int e = 0; e < dims.size(); e++)
|
|
if (dims[e] < 0)
|
|
dims[e] += x->rankOf();
|
|
|
|
REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions required for reduction!");
|
|
|
|
// auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims);
|
|
|
|
// auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo));
|
|
// auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong));
|
|
|
|
const Nd4jLong* zShapeInfoH = z->shapeInfo();
|
|
const Nd4jLong* zShapeInfoD = z->specialShapeInfo();
|
|
|
|
if(x->rankOf() == z->rankOf()) {
|
|
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(z->shapeInfo(), dims, z->getContext()->getWorkspace());
|
|
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
|
|
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
|
|
}
|
|
|
|
std::vector<int> dims2 = ShapeUtils::evalDimsForReduceOp(x->rankOf(), dims);
|
|
|
|
NativeOpExecutioner::execReduceFloat(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(),
|
|
extras.argumentsAsT(z->dataType()), z->buffer(), zShapeInfoH, z->specialBuffer(), zShapeInfoD,
|
|
dims2.data(), (int) dims2.size());
|
|
|
|
}
|
|
|
|
STORE_RESULT(*z);
|
|
} else {
|
|
auto indices = INPUT_VARIABLE(1);
|
|
if (indices->lengthOf() == x->rankOf())
|
|
allAxes = true;
|
|
|
|
//indices->printIndexedBuffer("indices");
|
|
|
|
std::vector<int> dims(indices->lengthOf());
|
|
for (int e = 0; e < indices->lengthOf(); e++) {
|
|
// lol otherwise we segfault on macOS
|
|
int f = indices->e<int>(e);
|
|
dims[e] = f >= 0 ? f : f += x->rankOf();
|
|
}
|
|
|
|
if ((block.getIArguments()->size() == 1 && INT_ARG(0) == sd::DataTypeUtils::max<int>()) || allAxes) {
|
|
// scalar
|
|
NativeOpExecutioner::execReduceFloatScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(x->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo());
|
|
} else {
|
|
// TAD
|
|
REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions required for reduction!");
|
|
|
|
// auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims);
|
|
|
|
// auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //(Nd4jLong *) manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo));
|
|
// auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //(Nd4jLong *) manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong));
|
|
|
|
const Nd4jLong* zShapeInfoH = z->shapeInfo();
|
|
const Nd4jLong* zShapeInfoD = z->specialShapeInfo();
|
|
|
|
if(x->rankOf() == z->rankOf()) {
|
|
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(z->shapeInfo(), dims, z->getContext()->getWorkspace());
|
|
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
|
|
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
|
|
}
|
|
|
|
std::vector<int> dims2 = ShapeUtils::evalDimsForReduceOp(x->rankOf(), dims);
|
|
|
|
NativeOpExecutioner::execReduceFloat(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(),
|
|
extras.argumentsAsT(z->dataType()), z->buffer(), zShapeInfoH, z->specialBuffer(), zShapeInfoD,
|
|
dims2.data(), (int) dims2.size());
|
|
}
|
|
}
|
|
|
|
manager.synchronize();
|
|
return Status::OK();
|
|
}
|
|
|
|
/**
|
|
* For all reductions rules are simple: either you return scalar, or you return reduced NDArray.
|
|
* It solely depends on input shape, and requested dimensions
|
|
*/
|
|
ShapeList *LegacyReduceFloatOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) {
|
|
auto inShape = inputShape->at(0);
|
|
|
|
bool allAxes = false;
|
|
|
|
auto keepDims = block.numB() > 0 ? B_ARG(0) : false;
|
|
auto newFormat = block.numB() > 1 ? B_ARG(1) : true;
|
|
|
|
auto axis = block.width() > 1 ? INPUT_VARIABLE(1)->asVectorT<int>() : *block.getAxis();
|
|
|
|
if (axis.size() == shape::rank(inShape))
|
|
allAxes = true;
|
|
|
|
// in this case we're building proper shape for reduction
|
|
auto newShape = ShapeUtils::evalReduceShapeInfo(shape::order(inShape), axis, inShape, keepDims, !newFormat, block.workspace());
|
|
|
|
return SHAPELIST(newShape);
|
|
}
|
|
}
|
|
} |