cavis/libnd4j/include/ops/declarable/helpers/cuda/solve.cu

141 lines
7.6 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2020 Konduit, K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <system/op_boilerplate.h>
#include <array/NDArray.h>
#include <array/NDArrayFactory.h>
#include <helpers/MmulHelper.h>
#include <execution/Threads.h>
#include <helpers/ConstantTadHelper.h>
#include "../triangular_solve.h"
#include "../lup.h"
#include "../solve.h"
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
static __global__ void oneOnDiagonalKernel(T* ioBuf, Nd4jLong const* ioShape, Nd4jLong const* tadShape, Nd4jLong const* tadOffsets, Nd4jLong batchNum, Nd4jLong rowNum) {
for (auto i = blockIdx.x; i < batchNum; i += gridDim.x) {
auto matrixPart = ioBuf + tadOffsets[i];
for (auto j = threadIdx.x; j < rowNum; j += blockDim.x) {
Nd4jLong pos[] = {j, j};
auto offset = shape::getOffset(tadShape, pos);
matrixPart[offset] = T(1.f);
}
}
}
template <typename T>
static __global__ void restorePermutationsKernel(T* PBuf, Nd4jLong const* PShapeInfo, int const* permutationsBuf,
Nd4jLong const* PTadShapeInfo, Nd4jLong const* PTadSOffsets, Nd4jLong const* permutationsTadShapeInfo, Nd4jLong const* permutationsTadOffsets, Nd4jLong batchNum, Nd4jLong rowNum) {
for (auto batch = blockIdx.x; batch < batchNum; batch += gridDim.x) {
auto permutations = permutationsBuf + permutationsTadOffsets[batch];
auto P = PBuf + PTadSOffsets[batch];
for (auto row = threadIdx.x; row < rowNum; row += blockDim.x) {
//auto posX[] = {row};
Nd4jLong posZ[] = {row, permutations[row]};
auto zOffset = shape::getOffset(PTadShapeInfo, posZ);
P[zOffset] = T(1.f);
}
}
}
template <typename T>
static int solveFunctor_(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput,
bool adjoint, NDArray* output) {
NDArray::prepareSpecialUse({output}, {leftInput, rightInput});
// stage 1: LU decomposition batched
auto leftOutput = leftInput->ulike();
auto permuShape = rightInput->getShapeAsVector(); permuShape.pop_back();
auto permutations = NDArrayFactory::create<int>('c', permuShape, context);
helpers::lu(context, leftInput, &leftOutput, &permutations);
auto leftLower = leftOutput.dup();
auto rightOutput = rightInput->ulike();
auto leftLowerTad = ConstantTadHelper::getInstance().tadForDimensions(leftLower.shapeInfo(), {-2, -1});
auto stream = context->getCudaStream();
oneOnDiagonalKernel<T><<<128, 256, 256, *stream>>>(leftLower.dataBuffer()->specialAsT<T>(), leftLower.specialShapeInfo(), leftLowerTad.specialShapeInfo(), leftLowerTad.specialOffsets(), leftLowerTad.numberOfTads(), leftLower.sizeAt(-1));
auto P = leftOutput.ulike(); P.nullify();
auto PTad = ConstantTadHelper::getInstance().tadForDimensions(P.shapeInfo(), {-2, -1});
auto permutationsTad = ConstantTadHelper::getInstance().tadForDimensions(permutations.shapeInfo(), {-1});
restorePermutationsKernel<T><<<128, 256, 256, *stream>>>(P.dataBuffer()->specialAsT<T>(), P.specialShapeInfo(), permutations.dataBuffer()->specialAsT<int>(),
PTad.specialShapeInfo(), PTad.specialOffsets(), permutationsTad.specialShapeInfo(), permutationsTad.specialOffsets(), permutationsTad.numberOfTads(), permutations.sizeAt(-1));
P.tickWriteDevice();
auto rightPart = rightInput->ulike();
MmulHelper::matmul(&P, rightInput, &rightPart, 0, 0);
// stage 2: triangularSolveFunctor for Lower with given b
helpers::triangularSolveFunctor(context, &leftLower, &rightPart, true, false, &rightOutput);
// stage 3: triangularSolveFunctor for Upper with output of previous stage
helpers::triangularSolveFunctor(context, &leftOutput, &rightOutput, false, false, output);
NDArray::registerSpecialUse({output}, {leftInput, rightInput});
return Status::OK();
}
int solveFunctor(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) {
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return solveFunctor_, (context, leftInput, rightInput, adjoint, output), FLOAT_TYPES);
}
template <typename T>
static __global__ void adjointKernel(T* output, Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns, Nd4jLong const* outputTads,
Nd4jLong const* outputOffsets) {
for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) {
auto outputPart = output + outputOffsets[b];
for (auto r = threadIdx.x; r < rows; r += blockDim.x) {
for (auto c = threadIdx.y; c < r; c += blockDim.y) {
Nd4jLong zPos[] = {r, c};
Nd4jLong xPos[] = {c, r};
auto zIndex = shape::getOffset(outputTads, zPos);
auto xIndex = shape::getOffset(outputTads, xPos);
math::nd4j_swap(outputPart[zIndex], outputPart[xIndex]);
}
}
}
}
template <typename T>
static void adjointMatrix_(sd::LaunchContext* context, NDArray const* input, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input});
auto inputTads = ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), {-2, -1});
auto outputTads = ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), {-2, -1});
auto stream = context->getCudaStream();
auto outputBuf = reinterpret_cast<T*>(output->specialBuffer());
auto rows = input->sizeAt(-2);
auto columns = input->sizeAt(-1);
output->assign(input);
adjointKernel<T><<<128, 256, 256, *stream>>>(outputBuf, outputTads.numberOfTads(), rows, columns, outputTads.specialShapeInfo(), outputTads.specialOffsets());
NDArray::registerSpecialUse({output}, {input});
}
void adjointMatrix(sd::LaunchContext* context, NDArray const* input, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), adjointMatrix_, (context, input, output), FLOAT_TYPES);
}
}
}
}