cavis/libnd4j/include/ops/declarable/helpers/cuda/segment_sum.cu

410 lines
21 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/segment.h>
#include <ops/declarable/helpers/segment_common.h>
#include <array/NDArrayFactory.h>
#include <helpers/ShapeUtils.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
// -------------------------------------------------------------------------------------------------------------- //
// Segment ops linear kernels
// -------------------------------------------------------------------------------------------------------------- //
template<typename T, typename I>
static __global__ void
segmentSumLinearKernel(
const void *input, const Nd4jLong *inputShape,
int *starts, int *lengths, Nd4jLong numOfClasses,
void *output, const Nd4jLong *outputShape) {
__shared__
T *val;
__shared__
Nd4jLong xLen, zLen, segment, zIndex;
__shared__
const T *x;
__shared__
T *z;
__shared__ int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
segment = blockIdx.x / threadsPerSegment;
x = reinterpret_cast<const T *>(input);
z = reinterpret_cast<T *>(output);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
if (segment < numOfClasses) {
zIndex = shape::getIndexOffset(segment, outputShape);
start = starts[segment];
finish = start + lengths[segment];
//val[segment] = ;
z[zIndex] = x[shape::getIndexOffset(start, inputShape)];
}
}
__syncthreads();
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape);
sd::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
// -------------------------------------------------------------------------------------------------------------- //
template<typename T, typename I>
static __global__ void
unsortedSegmentSumLinearKernel(
const void *input, const Nd4jLong *inputShape,
const void *indices, const Nd4jLong *indicesShape,
int *starts, int *lengths, Nd4jLong numOfClasses,
void *output, const Nd4jLong *outputShape) {
__shared__
T *val;
__shared__
Nd4jLong xLen, zLen, segment, zIndex;
__shared__
const T *x;
__shared__
T *z;
__shared__
const I *y; //int threadsPerSegment, start, finish;
if (threadIdx.x == 0) {
segment = blockIdx.x;
x = reinterpret_cast<const T *>(input);
z = reinterpret_cast<T *>(output);
y = reinterpret_cast<const I *>(indices);
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
zIndex = shape::getIndexOffset(segment, outputShape);
if (lengths[segment] > 0)
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape)];
else
z[zIndex] = 0; //DataTypeUtils::max<T>();
}
__syncthreads();
if (lengths[segment] > 0)
for (auto e = threadIdx.x; e < xLen; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputShape);
auto yIndex = shape::getIndexOffset(e, indicesShape);
if (y[yIndex] == segment && e != starts[segment]) {
sd::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentSum kernel
template <typename T, typename I>
static __global__ void segmentSumTadKernel(
const void* inputBuf, const Nd4jLong* inputShape, const Nd4jLong* inputTads, const Nd4jLong* inputTadOffsets,
const I* indices,
int* starts, int* lengths, Nd4jLong numOfClasses,
void* outputBuf, const Nd4jLong* outputShape, const Nd4jLong* outputTads, const Nd4jLong* outputTadOffsets) {
__shared__ T* val;
__shared__ Nd4jLong len, zIndex, total;
__shared__ T* z;
__shared__ int start, finish;
if (threadIdx.x == 0) {
auto segment = indices[blockIdx.x]; // / threadsPerSegment;
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
len = shape::length(inputTads);
start = starts[segment];
finish = start + lengths[segment];
total = shape::sizeAt(inputShape, 0);
}
__syncthreads();
auto idx = blockIdx.x;
if (blockIdx.x <= total) {
auto x = reinterpret_cast<const T *>(inputBuf) + inputTadOffsets[idx];
if (blockIdx.x == start) {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads);
auto zIndex = shape::getIndexOffset(e, outputTads);
sd::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
else {
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads);
auto zIndex = shape::getIndexOffset(e, outputTads);
if (lengths[indices[idx]])
sd::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
}
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void segmentSumFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
auto stream = context->getCudaStream();
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses}, context);
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses}, context);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
if (input->isVector()) {
segmentSumLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
segmentSumTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
void segmentSumFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices});
output->nullify();
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentSumFunctor_, (context, input, indices, output), NUMERIC_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices});
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentSumFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses}, context);
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses}, context);
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numOfClasses, indices->lengthOf(), (numOfClasses + 1) * 64);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
fillUpSegments(indices, numOfClasses, classesRangesBegs, classesRangesLens);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
if (input->isVector()) {
unsortedSegmentSumLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
}
else {
output->assign(0);
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentSumTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentSumFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices});
output->nullify();
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentSumFunctor_, (context, input, indices, numOfClasses, output),
NUMERIC_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices});
}
// -------------------------------------------------------------------------------------------------------------- //
// Backpropagate ops
// -------------------------------------------------------------------------------------------------------------- //
// Sorted sum backpropagate
template <typename T, typename I>
static __global__ void segmentSumBPLinearKernel(
const void* inputBuf, const Nd4jLong* inputShape,
const void* eps, const Nd4jLong* epsShape,
const void* indicesBuf, const Nd4jLong* indicesShape,
void* outputBuf, const Nd4jLong* outputShape) {
auto x = reinterpret_cast<const T*>(inputBuf);
auto y = reinterpret_cast<const I*>(indicesBuf);
auto z = reinterpret_cast<T*>(outputBuf);
auto gradOut = reinterpret_cast<const T*>(eps);
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
gradLen = shape::length(epsShape);
}
__syncthreads();
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape);
auto xOffset = shape::getIndexOffset(e, inputShape);
auto yOffset = shape::getIndexOffset(e, indicesShape);
auto classIndex = y[yOffset];
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape);
z[zOffset] = gradOut[gradOffsetO];
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentSumBPTadKernel(
const void* inputBuf, const Nd4jLong* inputShape,
const void* eps, const Nd4jLong* epsShape,
const void* indicesBuf, const Nd4jLong* indicesShape,
void* outputBuf, const Nd4jLong* outputShape,
const Nd4jLong* inputTad, const Nd4jLong* inputOffsets,
const Nd4jLong* gradOutTad, const Nd4jLong* gradOutOffsets,
const Nd4jLong* outTad, const Nd4jLong* outOffsets) {
__shared__ const T* x;
__shared__ const T* gradOut;
__shared__ const I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<const T*>(inputBuf);
y = reinterpret_cast<const I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<const T*>(eps);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
__syncthreads();
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
auto yIndex = shape::getIndexOffset(i, indicesShape);
auto segment = y[yIndex];
auto currentOut = z + outOffsets[i];
auto outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
currentOut[e] = outGrad[e];
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
int segmentSumFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSumBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
auto gradOutTads = packGradOut.specialShapeInfo();
auto gradOutTadOffsets = packGradOut.specialOffsets();
segmentSumBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
int segmentSumFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentSumFunctorBP_, (context, input,
indices, gradOut, output), FLOAT_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
}
template <typename T, typename I>
static int unsortedSegmentSumFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSumBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
auto gradOutTads = packGradOut.specialShapeInfo();
auto gradOutTadOffsets = packGradOut.specialOffsets();
segmentSumBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentSumFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentSumFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
}
}
}
}