238 lines
11 KiB
Plaintext
238 lines
11 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma, created on 25.02.2018
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/batchnorm.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/OmpLaunchHelper.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
#include <helpers/PointersManager.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// template<typename T>
|
|
// __global__ static void batchnormCuda(const void* vx, const Nd4jLong* xShapeInfo,
|
|
// const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
// const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
// const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
// const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
// void* vz, const Nd4jLong* zShapeInfo,
|
|
// const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets,
|
|
// const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets,
|
|
// const T epsilon) {
|
|
|
|
// const auto x = reinterpret_cast<const T*>(vx);
|
|
// auto z = reinterpret_cast<T*>(vz);
|
|
// const auto mean = reinterpret_cast<const T*>(vMean);
|
|
// const auto variance = reinterpret_cast<const T*>(vVariance);
|
|
// const auto gamma = reinterpret_cast<const T*>(vGamma);
|
|
// const auto beta = reinterpret_cast<const T*>(vBeta);
|
|
|
|
// // maxRank = xRank = zRank, minRank = meanRank = varianceRank = gammaRank = betaRank
|
|
// __shared__ Nd4jLong minLen, tadLen, totalThreads;
|
|
|
|
// if (threadIdx.x == 0) {
|
|
// totalThreads = gridDim.x * blockDim.x;
|
|
|
|
// minLen = shape::length(meanShapeInfo);
|
|
// tadLen = shape::length(xShapeInfo) / minLen;
|
|
// }
|
|
// __syncthreads();
|
|
|
|
// const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
// for (uint i = tid; i < minLen; i += totalThreads) {
|
|
|
|
// const auto meanOffset = shape::getIndexOffset(i, meanShapeInfo);
|
|
// const auto varianceOffset = shape::getIndexOffset(i, varianceShapeInfo);
|
|
|
|
// T sigmaInvGam = 1. / sd::math::nd4j_sqrt<T, T>(variance[varianceOffset] + epsilon);
|
|
|
|
// if(gamma != nullptr)
|
|
// sigmaInvGam *= gamma[shape::getIndexOffset(i, gammaShapeInfo)];
|
|
|
|
// auto betaOffset = 0;
|
|
// if(beta != nullptr)
|
|
// betaOffset = shape::getIndexOffset(i, betaShapeInfo);
|
|
|
|
// const auto xTad = x + xTadOffsets[i];
|
|
// auto zTad = z + zTadOffsets[i];
|
|
|
|
// for (uint j = 0; j < tadLen; ++j) {
|
|
|
|
// const auto xTadOffset = shape::getIndexOffset(j, xTadShapeInfo);
|
|
// const auto zTadOffset = shape::getIndexOffset(j, zTadShapeInfo);
|
|
|
|
// zTad[zTadOffset] = (xTad[xTadOffset] - mean[meanOffset]) * sigmaInvGam;
|
|
|
|
// if(beta != nullptr)
|
|
// zTad[zTadOffset] += beta[betaOffset];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void batchnormCuda2(const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int numDims, const int* dims,
|
|
const T epsilon) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
const auto mean = reinterpret_cast<const T*>(vMean);
|
|
const auto variance = reinterpret_cast<const T*>(vVariance);
|
|
const auto gamma = reinterpret_cast<const T*>(vGamma);
|
|
const auto beta = reinterpret_cast<const T*>(vBeta);
|
|
|
|
__shared__ int xRank, minRank; // xRank == zRank, minRank = meanRank = varianceRank = gammaRank = betaRank
|
|
__shared__ Nd4jLong xLen, totalThreads; // xLen = zLen
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
|
|
xLen = shape::length(xShapeInfo);
|
|
xRank = shape::rank(xShapeInfo);
|
|
minRank = shape::rank(meanShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
int coords[MAX_RANK];
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (uint i = tid; i < xLen; i += totalThreads) {
|
|
|
|
shape::index2coords(i, xShapeInfo, coords);
|
|
|
|
const auto xOffset = shape::getOffset(xShapeInfo, coords);
|
|
const auto zOffset = shape::getOffset(zShapeInfo, coords);
|
|
|
|
if(minRank == xRank) {
|
|
for (uint i = 0, j = 0; i < xRank; ++i) {
|
|
if(j < numDims && i != dims[j])
|
|
coords[i] = 0;
|
|
else
|
|
++j;
|
|
}
|
|
}
|
|
else // minRank = numDims = 1 in this case
|
|
coords[0] = coords[dims[0]];
|
|
|
|
const auto meanOffset = shape::getOffset(meanShapeInfo, coords);
|
|
const auto varianceOffset = shape::getOffset(varianceShapeInfo, coords);
|
|
|
|
T sigmaInvGam = 1. / sd::math::nd4j_sqrt<T, T>(variance[varianceOffset] + epsilon);
|
|
|
|
if(gamma != nullptr) {
|
|
const auto gammaOffset = shape::getOffset(gammaShapeInfo, coords);
|
|
sigmaInvGam *= gamma[gammaOffset];
|
|
}
|
|
|
|
z[zOffset] = (x[xOffset] - mean[meanOffset]) * sigmaInvGam;
|
|
|
|
if(beta != nullptr) {
|
|
const auto betaOffset = shape::getOffset(betaShapeInfo, coords);
|
|
z[zOffset] += beta[betaOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// template<typename T>
|
|
// __host__ static void batchnormCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
|
|
// const void* vx, const Nd4jLong* xShapeInfo,
|
|
// const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
// const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
// const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
// const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
// void* vz, const Nd4jLong* zShapeInfo,
|
|
// const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets,
|
|
// const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets,
|
|
// const double epsilon) {
|
|
|
|
// batchnormCuda<T><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, xTadShapeInfo, xTadOffsets, zTadShapeInfo, zTadOffsets, static_cast<T>(epsilon));
|
|
// }
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__host__ static void batchnormCudaLauncher2(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int numDims, const int* dims,
|
|
const double epsilon) {
|
|
|
|
batchnormCuda2<T><<<blocksPerGrid, threadsPerBlock, 512, *stream>>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, numDims, dims, static_cast<T>(epsilon));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void batchnorm(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta, NDArray* output, const std::vector<int>& axes, const double epsilon) {
|
|
|
|
// std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), axes);
|
|
|
|
// auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimsToExclude);
|
|
// auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimsToExclude);
|
|
|
|
// const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
// const int blocksPerGrid = (mean->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
// PointersManager manager(input->getContext(), "batchnorm");
|
|
|
|
// NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
// BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher, (blocksPerGrid, threadsPerBlock, input->getContext()->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), mean->specialBuffer(), mean->specialShapeInfo(), variance->specialBuffer(), variance->specialShapeInfo(), gamma ? gamma->specialBuffer() : nullptr, gamma ? gamma->specialShapeInfo() : nullptr, beta ? beta->specialBuffer() : nullptr, beta ? beta->specialShapeInfo() : nullptr, output->specialBuffer(), output->special(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platform(), packZ.platform(), epsilon), FLOAT_TYPES);
|
|
// NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
|
|
// manager.synchronize();
|
|
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (input->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(input->getContext(), "batchnorm");
|
|
|
|
const int* dims = reinterpret_cast<int*>(manager.replicatePointer(axes.data(), axes.size() * sizeof(int)));
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher2, (blocksPerGrid, threadsPerBlock, input->getContext()->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), mean->specialBuffer(), mean->specialShapeInfo(), variance->specialBuffer(), variance->specialShapeInfo(), gamma ? gamma->specialBuffer() : nullptr, gamma ? gamma->specialShapeInfo() : nullptr, beta ? beta->specialBuffer() : nullptr, beta ? beta->specialShapeInfo() : nullptr, output->specialBuffer(), output->specialShapeInfo(), axes.size(), dims, epsilon), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|