cavis/libnd4j/include/legacy/cpu/NativeOps.cpp

3238 lines
129 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by agibsonccc on 2/21/16.
//
#define __STDC_CONSTANT_MACROS
#include <legacy/NativeOps.h>
#include "legacy/NativeOpExecutioner.h"
#include <array/NDArray.h>
#include <graph/GraphExecutioner.h>
#include <graph/GraphHolder.h>
#include <math/templatemath.h>
#include <types/float8.h>
#include <loops/type_conversions.h>
#include <helpers/helper_ptrmap.h>
#include <helpers/logger.h>
#include <system/pointercast.h>
#include <system/pairwise_util.h>
#include <types/types.h>
#include <ops/declarable/helpers/transforms.h>
#include <exceptions/allocation_exception.h>
#include <helpers/BlasHelper.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#else
#include <io.h>
#include <helpers/mman.h>
#endif
#include <sys/types.h>
#include <ops/declarable/CustomOperations.h>
#include <errno.h>
char *name;
bool nameSet = false;
#ifdef __ND4J_EXPERIMENTAL__
bool experimentalSupport = true;
#else
bool experimentalSupport = false;
#endif
#include <ops/specials.h>
#include <system/Environment.h>
#include <helpers/TAD.h>
#include <ops/declarable/OpRegistrator.h>
#include <graph/Context.h>
#include <graph/ResultWrapper.h>
#include <helpers/DebugHelper.h>
#include <helpers/ConstantTadHelper.h>
#include <performance/benchmarking/BenchmarkSuit.h>
#include <performance/benchmarking/FullBenchmarkSuit.h>
#include <performance/benchmarking/LightBenchmarkSuit.h>
#include <execution/Threads.h>
#ifdef CPU_FEATURES
#include <cpuinfo_x86.h>
#endif
using namespace sd;
void setElementThreshold(int num) {
if (num > 0)
sd::Environment::getInstance().setElementwiseThreshold(num);
}
void setTADThreshold(int num) {
if (num > 0)
sd::Environment::getInstance().setTadThreshold(num);
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
*/
void execIndexReduceScalar(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execIndexReduceScalar(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
* @param hZ
* @param hZShapeInfo
* @param dimension
* @param dimensionLength
*/
void execIndexReduce(Nd4jPointer *extraPointers,int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(hXShapeInfo, dimension,
dimensionLength);
auto hTADShapeInfo = tadPack.primaryShapeInfo();
auto hTADOffsets = tadPack.primaryOffsets();
auto hz = reinterpret_cast<Nd4jLong *>(dbZ->primary());
NativeOpExecutioner::execIndexReduce(nullptr, opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
hz,
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dimension,
dimensionLength,
hTADShapeInfo,
hTADOffsets);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param hY
* @param hYShapeInfo
* @param hZ
* @param hZShapeInfo
* @param dimension
* @param dimensionLength
*/
void execBroadcast(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPackX = sd::ConstantTadHelper::getInstance().tadForDimensions(hXShapeInfo, dimension, dimensionLength);
auto tadPackZ = sd::ConstantTadHelper::getInstance().tadForDimensions(hZShapeInfo, dimension, dimensionLength);
auto hTADShapeInfo = tadPackX.primaryShapeInfo();
auto hTADOffsets = tadPackX.primaryOffsets();
auto hTADShapeInfoZ = tadPackZ.primaryShapeInfo();
auto hTADOffsetsZ = tadPackZ.primaryOffsets();
NativeOpExecutioner::execBroadcast(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbY->primary(),
hYShapeInfo,
dbY->special(),
dYShapeInfo,
dbZ->primary(), hZShapeInfo,
dbZ->special(), dZShapeInfo,
dimension,
dimensionLength, hTADShapeInfo, hTADOffsets, hTADShapeInfoZ, hTADOffsetsZ);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execBroadcastBool(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPackX = sd::ConstantTadHelper::getInstance().tadForDimensions(hXShapeInfo, dimension, dimensionLength);
auto tadPackZ = sd::ConstantTadHelper::getInstance().tadForDimensions(hZShapeInfo, dimension, dimensionLength);
auto hTADShapeInfo = tadPackX.primaryShapeInfo();
auto hTADOffsets = tadPackX.primaryOffsets();
auto hTADShapeInfoZ = tadPackZ.primaryShapeInfo();
auto hTADOffsetsZ = tadPackZ.primaryOffsets();
NativeOpExecutioner::execBroadcastBool(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbY->primary(),
hYShapeInfo,
dbY->special(),
dYShapeInfo,
dbZ->primary(), hZShapeInfo,
dbZ->special(), dZShapeInfo,
extraParams,
dimension,
dimensionLength, hTADShapeInfo, hTADOffsets, hTADShapeInfoZ,
hTADOffsetsZ);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param hY
* @param hYShapeInfo
* @param hZ
* @param hZShapeInfo
* @param extraParams
* @param n
*/
void execPairwiseTransform(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execPairwiseTransform(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbY->primary(),
hYShapeInfo,
dbY->special(),
dYShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execPairwiseTransformBool(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execPairwiseBoolTransform(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbY->primary(),
hYShapeInfo,
dbY->special(),
dYShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
* @param hZ
* @param hZShapeInfo
*/
void execReduceFloat(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduceFloatScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceSame(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduceSameScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceBool(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduceBoolScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceLong(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduceLongScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
* @param hZ
* @param hZShapeInfo
*/
void execReduceFloat2(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
const auto zLen = shape::length(hZShapeInfo);
std::vector<int> dimensions(dimension, dimension + dimensionLength);
const Nd4jLong* zShapeInfoH = hZShapeInfo;
const Nd4jLong* zShapeInfoD = dZShapeInfo;
if(shape::rank(hXShapeInfo) - dimensionLength != shape::rank(hZShapeInfo) && zLen != 1) {
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(hZShapeInfo, dimensions);
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
}
std::vector<int> dims = (zLen != 1) ? ShapeUtils::evalDimsForReduceOp(shape::rank(hXShapeInfo), dimensions) : std::vector<int>();
NativeOpExecutioner::execReduceFloat(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbZ->primary(), zShapeInfoH, dbZ->special(), zShapeInfoD, dims.data(), dims.size());
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceBool2(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
std::vector<int> dimensions(dimension, dimension + dimensionLength);
const auto zLen = shape::length(hZShapeInfo);
const Nd4jLong* zShapeInfoH = hZShapeInfo;
const Nd4jLong* zShapeInfoD = dZShapeInfo;
if(shape::rank(hXShapeInfo) - dimensionLength != shape::rank(hZShapeInfo)) {
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(hZShapeInfo, dimensions);
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
}
std::vector<int> dims = (zLen != 1) ? ShapeUtils::evalDimsForReduceOp(shape::rank(hXShapeInfo), dimensions) : std::vector<int>();
NativeOpExecutioner::execReduceBool(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbZ->primary(), zShapeInfoH, dbZ->special(), zShapeInfoD, dims.data(), dims.size());
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceSame2(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
std::vector<int> dimensions(dimension, dimension + dimensionLength);
const auto zLen = shape::length(hZShapeInfo);
const Nd4jLong* zShapeInfoH = hZShapeInfo;
const Nd4jLong* zShapeInfoD = dZShapeInfo;
if(shape::rank(hXShapeInfo) - dimensionLength != shape::rank(hZShapeInfo) && zLen != 1) {
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(hZShapeInfo, dimensions);
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
}
std::vector<int> dims = (zLen != 1) ? ShapeUtils::evalDimsForReduceOp(shape::rank(hXShapeInfo), dimensions) : std::vector<int>();
NativeOpExecutioner::execReduceSame(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbZ->primary(), zShapeInfoH, dbZ->special(), zShapeInfoD, dims.data(), dims.size());
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduceLong2(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
std::vector<int> dimensions(dimension, dimension + dimensionLength);
const auto zLen = shape::length(hZShapeInfo);
const Nd4jLong* zShapeInfoH = hZShapeInfo;
const Nd4jLong* zShapeInfoD = dZShapeInfo;
if(shape::rank(hXShapeInfo) - dimensionLength != shape::rank(hZShapeInfo) && zLen != 1) {
auto zPack = ConstantShapeHelper::getInstance().createShapeInfoWithNoUnitiesForReduce(hZShapeInfo, dimensions);
zShapeInfoH = reinterpret_cast<Nd4jLong const*>(zPack.primary());
zShapeInfoD = reinterpret_cast<Nd4jLong const*>(zPack.special());
}
std::vector<int> dims = (zLen != 1) ? ShapeUtils::evalDimsForReduceOp(shape::rank(hXShapeInfo), dimensions) : std::vector<int>();
NativeOpExecutioner::execReduceLong(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbZ->primary(), zShapeInfoH, dbZ->special(), zShapeInfoD, dims.data(), dims.size());
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParamsVals
* @param hY
* @param hYShapeInfo
* @param hZ
* @param hZShapeInfo
*/
void execReduce3(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduce3(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbY->primary(), hYShapeInfo,
dbY->special(), dYShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParamsVals
* @param hY
* @param hYShapeInfo
*/
void execReduce3Scalar(Nd4jPointer *extraPointers,int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo) {
try {
NativeOpExecutioner::execReduce3Scalar(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParams, dbY->primary(),
hYShapeInfo, dbY->special(), dYShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParamsVals
* @param hY
* @param hYShapeInfo
* @param hZ
* @param hZShapeInfo
* @param dimension
* @param dimensionLength
*/
void execReduce3Tad(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape,
const Nd4jLong *tadOnlyShapeInfo, const Nd4jLong *tadOffsets,
const Nd4jLong *yTadOnlyShapeInfo, const Nd4jLong *yTadOffsets) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
if (extraPointers == nullptr || extraPointers[2] == 0) {
NativeOpExecutioner::execReduce3(LaunchContext::defaultContext(), opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo,
extraParams, dbY->primary(), hYShapeInfo, dbY->special(), dYShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(),
dZShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets,
yTadOnlyShapeInfo, yTadOffsets);
} else {
// going tad-way
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(hXShapeInfo, dimension,
dimensionLength);
auto hTADShapeInfo = tadPack.primaryShapeInfo();
auto hTADOffsets = tadPack.primaryOffsets();
NativeOpExecutioner::execReduce3TAD(LaunchContext::defaultContext(), opNum, dbX->primary(), hXShapeInfo, dbX->special(),
dXShapeInfo, extraParams, dbY->primary(), hYShapeInfo, dbY->special(), dYShapeInfo, dbZ->primary(),
hZShapeInfo, dbZ->special(), dZShapeInfo, dimension, dimensionLength, hTADShapeInfo,
hTADOffsets, nullptr, nullptr);
}
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
bool isBlasVersionMatches(int major, int minor, int build) {
return true;
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param hZ
* @param hZShapeInfo
* @param hScalar
* @param extraParams
* @param n
*/
void execScalar(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbScalar, const Nd4jLong *hScalarShapeInfo, const Nd4jLong *dScalarShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dbScalar->primary(),
hScalarShapeInfo,
dbScalar->special(),
dScalarShapeInfo,
extraParams);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execScalarBool(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbScalar, const Nd4jLong *hScalarShapeInfo, const Nd4jLong *dScalarShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execScalarBool(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dbScalar->primary(),
hScalarShapeInfo,
dbScalar->special(),
dScalarShapeInfo,
extraParams);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
*/
void execSummaryStatsScalar(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
bool biasCorrected) {
try {
NativeOpExecutioner::execSummaryStatsScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
biasCorrected);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
* @param hZ
* @param hZShapeInfo
*/
void execSummaryStats(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
bool biasCorrected) {
try {
NativeOpExecutioner::execSummaryStats(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
biasCorrected);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param extraParams
* @param hZ
* @param hZShapeInfo
* @param dimension
* @param dimensionLength
*/
void execSummaryStatsTad(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape,
bool biasCorrected,
const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
NativeOpExecutioner::execSummaryStats(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dimension,
dimensionLength,
tadShapeInfo,
tadOffsets,
biasCorrected);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
*
* @param opNum
* @param hX
* @param hXShapeInfo
* @param hZ
* @param hZShapeInfo
* @param extraParams
* @param n
*/
void execTransformFloat(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execTransformFloat(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams,
nullptr,
nullptr);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execTransformSame(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execTransformSame(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams,
nullptr,
nullptr);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execTransformBool(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execTransformBool(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams,
nullptr,
nullptr);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execTransformAny(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execTransformAny(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams,
nullptr,
nullptr);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execTransformStrict(
Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraParams) {
try {
NativeOpExecutioner::execTransformStrict(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
extraParams,
nullptr,
nullptr);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execReduce3All(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
void *extraParamsVals,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape,
const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets,
const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
auto dimensionLength = static_cast<int>(shape::length(hDimensionShape));
NativeOpExecutioner::execReduce3All(nullptr, opNum, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, extraParamsVals, dbY->primary(),
hYShapeInfo, dbY->special(), dYShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo, dimension,
dimensionLength, xTadShapeInfo, xOffsets, yTadShapeInfo, yOffsets);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
* Concatneate multi array of the same shape together
* along a particular dimension
*/
void specialConcat(
Nd4jPointer *extraPointers,
int dimension,
int numArrays,
Nd4jPointer *data,
Nd4jPointer *inputShapeInfo,
void *hZ,
Nd4jLong const* hZShapeInfo,
Nd4jPointer *tadPointers,
Nd4jPointer *offsetPointers) {
try {
auto zType = sd::ArrayOptions::dataType(hZShapeInfo);
BUILD_SINGLE_SELECTOR(zType, sd::SpecialMethods,::concatCpuGeneric(dimension, numArrays, data, inputShapeInfo, hZ, hZShapeInfo), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
/**
* This is dummy method for JNI compatibility
* Since we'll use this from java, jni compiler would like to have method no matter what.
*/
void initializeDevicesAndFunctions() {
}
void initializeFunctions(Nd4jPointer *functions) {
sd::BlasHelper::getInstance().initializeFunctions(functions);
}
/**
* This method acquires memory chunk of requested size on host side
*
* @param pointer pointer that'll be used for allocation
* @param memorySize memory size, in bytes
* @param flags optional parameter
*/
Nd4jPointer mallocHost(Nd4jLong memorySize, int flags) {
return reinterpret_cast<Nd4jPointer>(new int8_t[memorySize]);
}
/**
* This method acquires memory chunk of requested size on specified device
*
* PLEASE NOTE: This method is NOT supported and has NO effect in CPU-based backend.
*
* @param pointer pointer that'll be used for allocation
* @param memorySize memory size, in bytes
* @param ptrToDeviceId pointer to deviceId. For cuda that's just and int, for OpenCL that's pointer to device_id, etc
* @param flags optional parameter
*/
Nd4jPointer mallocDevice(Nd4jLong memorySize, int deviceId, int flags) {
// not supported
return 0L;
}
/**
* This method releases previously allocated host memory space
*
* @param pointer pointer that'll be freed
*/
int freeHost(Nd4jPointer pointer) {
delete[] reinterpret_cast<int8_t *>(pointer);
return 1L;
}
/**
* This method releases previously allocated memory space on device
*
* PLEASE NOTE: This method is NOT supported and has NO effect in CPU-based backend.
*
* @param pointer pointer that'll be freed
* @param ptrToDeviceId pointer to deviceId.
*/
int freeDevice(Nd4jPointer pointer, int deviceId) {
// not supported
return 0L;
}
/**
* Returns the maximum number open mp threads
*/
int ompGetMaxThreads() {
return omp_get_max_threads();
}
/**
* Returns the number open mp threads
*/
int ompGetNumThreads() {
return omp_get_num_threads();
}
/**
* Sets the number of openmp threads
*/
void setOmpNumThreads(int threads) {
omp_set_num_threads(threads);
}
Nd4jPointer createContext() {
return 0L;
}
Nd4jPointer createStream() {
return 0L;
}
Nd4jPointer createEvent() {
return 0L;
}
int getDeviceMajor(int deviceId ) {
return 0;
}
int getDeviceMinor(int deviceId) {
return 0;
}
int registerEvent(Nd4jPointer event, Nd4jPointer stream) {
return 0L;
}
int setDevice(int deviceId) {
return 0L;
}
Nd4jLong getDeviceFreeMemory(int deviceId) {
return 0L;
}
Nd4jLong getDeviceFreeMemoryDefault() {
return 0L;
}
Nd4jLong getDeviceTotalMemory(int deviceId) {
return 0L;
}
int memcpySync(Nd4jPointer dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
return 0L;
}
int memcpyAsync(Nd4jPointer dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
return 0L;
}
int memsetSync(Nd4jPointer dst, int value, Nd4jLong size, int flags, Nd4jPointer reserved) {
return 0L;
}
int memsetAsync(Nd4jPointer dst, int value, Nd4jLong size, int flags, Nd4jPointer reserved) {
return 0L;
}
int destroyEvent(Nd4jPointer event) {
return 0L;
}
int streamSynchronize(Nd4jPointer stream) {
return 0L;
}
int eventSynchronize(Nd4jPointer event) {
return 0L;
}
int getAvailableDevices() {
return 0L;
}
void enableDebugMode(bool reallyEnable) {
sd::Environment::getInstance().setDebug(reallyEnable);
}
void enableVerboseMode(bool reallyEnable) {
sd::Environment::getInstance().setVerbose(reallyEnable);
}
void setGridLimit(int gridSize) {
// no-op
}
sd::TadPack* tadOnlyShapeInfo(Nd4jLong const* hXShapeInfo, int *dimension, int dimensionLength) {
auto pack = new TadPack();
try {
*pack = sd::ConstantTadHelper::getInstance().tadForDimensions(hXShapeInfo, dimension, dimensionLength);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
return pack;
}
Nd4jLong const* getPrimaryShapeInfo(sd::TadPack* pack) {
return const_cast<Nd4jLong*>(pack->primaryShapeInfo());
}
Nd4jLong const* getPrimaryOffsets(sd::TadPack* pack) {
return const_cast<Nd4jLong*>(pack->primaryOffsets());
}
Nd4jLong const* getSpecialShapeInfo(sd::TadPack* pack) {
return const_cast<Nd4jLong*>(pack->specialShapeInfo());
}
Nd4jLong const* getSpecialOffsets(sd::TadPack* pack) {
return const_cast<Nd4jLong*>(pack->specialOffsets());
}
Nd4jLong getNumberOfTads(sd::TadPack* pack) {
return pack->numberOfTads();
}
int getShapeInfoLength(sd::TadPack* pack) {
return pack->shapeInfoLength();
}
int memcpyConstantAsync(Nd4jLong dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
// no-op
return 0L;
}
Nd4jPointer getConstantSpace() {
// no-op
return 0L;
}
template<typename T>
void pullRowsGeneric(void *vx,
Nd4jLong const* hXShapeInfo,
void *vz,
Nd4jLong const* hZShapeInfo,
const int n,
Nd4jLong const* indexes,
Nd4jLong const* tadShapeInfo,
Nd4jLong const* tadOffsets,
Nd4jLong const* zTadShapeInfo,
Nd4jLong const* zTadOffsets) {
auto hX = reinterpret_cast<T *>(vx);
auto hZ = reinterpret_cast<T *>(vz);
const auto xEWS = shape::elementWiseStride(tadShapeInfo);
const auto zEWS = shape::elementWiseStride(zTadShapeInfo);
const auto tadLength = shape::length(tadShapeInfo);
int elementsPerThread = n / TAD_THRESHOLD;
int _threads = sd::math::nd4j_max<int>(1, elementsPerThread);
_threads = sd::math::nd4j_min<int>(_threads, sd::Environment::getInstance().maxThreads());
auto func = PRAGMA_THREADS_FOR {
for (auto idx = start; idx < stop; idx++) {
auto xTadOffsetForBlock = tadOffsets[indexes[idx]];
auto zTadOffsetForBlock = zTadOffsets[idx];
auto rX = hX + xTadOffsetForBlock;
auto rZ = hZ + zTadOffsetForBlock;
if (xEWS == 1 && zEWS == 1) {
PRAGMA_OMP_SIMD
for (Nd4jLong i = 0; i < tadLength; i++) {
rZ[i] = rX[i];
}
} else if (xEWS >= 1 && zEWS >= 1) {
PRAGMA_OMP_SIMD
for (Nd4jLong i = 0; i < tadLength; i++) {
rZ[i * zEWS] = rX[i * xEWS];
}
} else {
for (Nd4jLong i = 0; i < tadLength; i++) {
auto xOffset = xTadOffsetForBlock + shape::getIndexOffset(i, tadShapeInfo);
auto zOffset = zTadOffsetForBlock + shape::getIndexOffset(i, zTadShapeInfo);
hZ[zOffset] = hX[xOffset];
}
}
}
};
samediff::Threads::parallel_tad(func, 0, n, 1, _threads);
}
void pullRows(Nd4jPointer *extraPointers,
OpaqueDataBuffer *dbX, Nd4jLong const* hXShapeInfo, Nd4jLong const* dXShapeInfo,
OpaqueDataBuffer *dbZ, Nd4jLong const* hZShapeInfo, Nd4jLong const* dZShapeInfo,
Nd4jLong n,
Nd4jLong* indexes,
Nd4jLong const* tadShapeInfo,
Nd4jLong const* tadOffsets,
Nd4jLong const* zTadShapeInfo,
Nd4jLong const* zTadOffsets) {
try {
auto xType = sd::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, pullRowsGeneric, (dbX->primary(), hXShapeInfo, dbZ->primary(), hZShapeInfo, n, indexes, tadShapeInfo, tadOffsets, zTadShapeInfo, zTadOffsets), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
template<typename T>
void tearGeneric(void *vx,
Nd4jLong const* hXShapeInfo,
Nd4jPointer *targets,
Nd4jLong const* hZShapeInfo,
Nd4jLong const* tadShapeInfo,
Nd4jLong const* tadOffsets) {
auto hX = reinterpret_cast<T *>(vx);
const auto tadLength = shape::length(tadShapeInfo);
auto tadEWS = shape::elementWiseStride(tadShapeInfo);
auto zEWS = shape::elementWiseStride(hZShapeInfo);
auto numTads = shape::length(hXShapeInfo) / tadLength;
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto hZ = reinterpret_cast<T *>(targets[i]);
auto s = hX + tadOffsets[i];
if (zEWS == 1 && tadEWS == 1) {
PRAGMA_OMP_SIMD
for (Nd4jLong j = 0; j < tadLength; j++) {
hZ[j] = s[j];
}
} else if (zEWS > 0 && tadEWS > 0) {
PRAGMA_OMP_SIMD
for (Nd4jLong j = 0; j < tadLength; j++) {
hZ[j * zEWS] = s[j * tadEWS];
}
} else {
for (Nd4jLong j = 0; j < tadLength; j++)
hZ[shape::getIndexOffset(j, hZShapeInfo)] = s[shape::getIndexOffset(j, tadShapeInfo)];
}
}
};
samediff::Threads::parallel_tad(func,0, numTads);
}
void tear(Nd4jPointer *extraPointers,
OpaqueDataBuffer *dbX, Nd4jLong const* hXShapeInfo, Nd4jLong const* dXShapeInfo,
Nd4jPointer *targets,
Nd4jLong const* hZShapeInfo,
Nd4jLong const* tadShapeInfo,
Nd4jLong const* tadOffsets) {
try {
auto xType = sd::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, tearGeneric, (dbX->primary(), hXShapeInfo, targets, hZShapeInfo, tadShapeInfo, tadOffsets), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void average(Nd4jPointer *extras,
Nd4jPointer *hX, const Nd4jLong *hXShapeInfo,
Nd4jPointer *dX, const Nd4jLong *dXShapeInfo,
void *z, const Nd4jLong *hZShapeInfo,
void *dz, const Nd4jLong *dZShapeInfo,
int n,
Nd4jLong length,
bool propagate) {
try {
auto xType = sd::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, sd::SpecialMethods, ::averageGeneric(hX, z, hZShapeInfo, n, length, propagate), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void accumulate(Nd4jPointer *extras,
Nd4jPointer *hX, Nd4jLong const* hXShapeInfo,
Nd4jPointer *dX, Nd4jLong const* dXShapeInfo,
void *hz, Nd4jLong const* hZShapeInfo,
void *dz, Nd4jLong const* dZShapeInfo,
int n,
Nd4jLong length) {
try {
auto xType = sd::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, sd::SpecialMethods, ::accumulateGeneric(hX, hz, hZShapeInfo, n, length), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void enableP2P(bool enable) {
// no-op
}
void encodeThresholdP1(Nd4jPointer *extraPointers, void *hX, Nd4jLong const* hXShapeInfo, Nd4jLong N, int *dz, float threshold) {
// TODO: to be implemented
}
void encodeThresholdP2Int(Nd4jPointer *extraPointers, int *hX, Nd4jLong N, int *dz) {
// TODO: to be implemented
}
void encodeThresholdP3(Nd4jPointer *extraPointers, void *hX, Nd4jLong const* hXShapeInfo, int *offsets, Nd4jLong N, int *dz){
// offsets won't be used here
// TODO: to be implemented
}
void decodeThreshold(Nd4jPointer *extraPointers, void *hX, Nd4jLong N, void *dz, const Nd4jLong *hZShapeInfo){
// TODO: to be implemented
}
bool isP2PAvailable() {
// always TRUE for cpu backend
return true;
}
void checkP2P() {
// no-op
}
void decodeBitmap(Nd4jPointer *extraPointers, void *hX, Nd4jLong N, void *dz, Nd4jLong const* hZShapeInfo) {
NativeOpExecutioner::decodeBitmap(hX, N, dz, hZShapeInfo);
}
template<typename T>
void shuffleGeneric(void **hX, Nd4jLong * const*hXShapeInfo, void **dz, Nd4jLong * const* hZShapeInfo, int N, int *shuffleMap, Nd4jLong * const* tadOnlyShapeInfo, Nd4jLong * const* tadOffsets) {
auto dX = reinterpret_cast<T **>(hX);
auto dZ = reinterpret_cast<T **>(dz);
auto func = PRAGMA_THREADS_FOR {
for (auto f = start; f < stop; f++) {
auto hX = reinterpret_cast<T *>(dX[f]);
//auto hZ = reinterpret_cast<T *>(dZ[f]);
auto xShapeInfo = hXShapeInfo[f];
auto tadOffset = reinterpret_cast<Nd4jLong *>(tadOffsets[f]);
const auto tadLength = shape::length(tadOnlyShapeInfo[f]);
auto tadEWS = shape::elementWiseStride(tadOnlyShapeInfo[f]);
auto tadRank = shape::rank(tadOnlyShapeInfo[f]);
auto numTads = shape::length(hXShapeInfo[f]) / tadLength;
auto tadShape = shape::shapeOf(tadOnlyShapeInfo[f]);
auto tadStride = shape::stride(tadOnlyShapeInfo[f]);
if (shape::rank(xShapeInfo) == 1) {
auto xLength = shape::length(xShapeInfo);
auto ews = shape::elementWiseStride(xShapeInfo);
for (Nd4jLong r = 0; r < xLength; r++) {
auto swapIdx = shuffleMap[r];
if (swapIdx < 0)
continue;
sd::math::nd4j_swap<T>(hX[r * ews], hX[swapIdx * ews]);
}
} else {
for (Nd4jLong r = 0; r < numTads; r++) {
if (shuffleMap[r] < 0)
continue;
auto oldOffset = tadOffset[r];
auto newOffset = tadOffset[shuffleMap[r]];
auto rX = hX + oldOffset;
auto rY = hX + newOffset;
if (tadEWS == 1) {
for (Nd4jLong i = 0; i < tadLength; i++) {
sd::math::nd4j_swap<T>(rX[i], rY[i]);
}
} else {
for (Nd4jLong i = 0; i < tadLength; i++) {
auto offset = shape::getIndexOffset(i, tadOnlyShapeInfo[f]);
sd::math::nd4j_swap<T>(hX[offset + oldOffset], hX[offset + newOffset]);
}
}
}
}
}
};
samediff::Threads::parallel_tad(func, 0, N);
}
void shuffle(Nd4jPointer *extras,
Nd4jPointer *hX, Nd4jPointer *hXShapeInfo,
Nd4jPointer *dX, Nd4jPointer *dXShapeInfo,
Nd4jPointer *hz, Nd4jPointer *hZShapeInfo,
Nd4jPointer *dz, Nd4jPointer *dZShapeInfo,
int N,
int *shuffleMap,
Nd4jPointer *tadShapeInfo,
Nd4jPointer *tadOffsets) {
try {
auto xShape = reinterpret_cast<Nd4jLong * const*>(hXShapeInfo);
auto zShape = reinterpret_cast<Nd4jLong * const*>(hZShapeInfo);
auto tadOnlyShapeInfo = reinterpret_cast<Nd4jLong * const*>(tadShapeInfo);
auto tadOffset = reinterpret_cast<Nd4jLong * const*>(tadOffsets);
auto xType = sd::ArrayOptions::dataType(xShape[0]);
BUILD_SINGLE_SELECTOR(xType, shuffleGeneric,
(hX, xShape, hz, zShape, N, shuffleMap, tadOnlyShapeInfo, tadOffset), LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
bool isExperimentalEnabled() {
return sd::Environment::getInstance().isExperimentalBuild();
}
void setOmpMinThreads(int threads) {
// TODO: to be implemented
}
int getDevice() {
return 0;
}
void execScalarTad(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, Nd4jLong const* hXShapeInfo, Nd4jLong const*dXShapeInfo,
OpaqueDataBuffer *dbZ, Nd4jLong const* hZShapeInfo, Nd4jLong const*dZShapeInfo,
OpaqueDataBuffer *dbScalars, Nd4jLong const* hScalarShapeInfo, Nd4jLong const* dScalarShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbDimension, Nd4jLong const* hDimensionShape, Nd4jLong const* dDimensionShape,
Nd4jLong const*tadShapeInfo, Nd4jLong const* tadOffsets,
Nd4jLong const*tadShapeInfoZ, Nd4jLong const* tadOffsetsZ) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
NativeOpExecutioner::execScalar(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dbScalars->primary(),
hScalarShapeInfo,
dbScalars->special(),
dScalarShapeInfo,
dimension,
shape::length(hDimensionShape),
tadShapeInfo,
tadOffsets,
tadShapeInfoZ,
tadOffsetsZ);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execScalarBoolTad(Nd4jPointer *extraPointers,
int opNum,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
OpaqueDataBuffer *dbScalars, const Nd4jLong *hScalarShapeInfo, const Nd4jLong *dScalarShapeInfo,
void *extraParams,
OpaqueDataBuffer *dbDimension, const Nd4jLong *hDimensionShape, const Nd4jLong *dDimensionShape,
const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets,
const Nd4jLong *tadShapeInfoZ, const Nd4jLong *tadOffsetsZ) {
try {
auto dimension = reinterpret_cast<int *>(dbDimension->primary());
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
NativeOpExecutioner::execScalarBool(nullptr,
opNum,
dbX->primary(),
hXShapeInfo,
dbX->special(),
dXShapeInfo,
extraParams,
dbZ->primary(),
hZShapeInfo,
dbZ->special(),
dZShapeInfo,
dbScalars->primary(),
hScalarShapeInfo,
dbScalars->special(),
dScalarShapeInfo,
dimension,
dimensionLength,
tadShapeInfo,
tadOffsets,
tadShapeInfoZ,
tadOffsetsZ);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
const char * getDeviceName(int deviceId) {
try {
if (!nameSet) {
name = reinterpret_cast<char *>(malloc(256 * sizeof(char)));
CHECK_ALLOC(name, "Failed to allocate new string buffer", 256);
std::memset(name, 0, 256 * sizeof(char));
nameSet = true;
// TODO: provide proper CPU model name here
sprintf(name, "x86-compatible CPU");
}
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
return name;
}
void execAggregate(Nd4jPointer *extraPointers,int opNum,
void **arguments,
int numArguments,
Nd4jLong **shapeArguments,
int numShapeArguments,
int *indexArguments,
int numIndexArguments,
int **intArrays,
int numIntArrays,
void *realArguments,
int numRealArguments,
sd::DataType dtype) {
}
void batchExecutor(Nd4jPointer *extraPointers,
int numAggregates,
int opNum,
int maxArgs,
int maxShapes,
int maxIntArrays,
int maxIntArraySize,
int maxIdx,
int maxReals,
void *ptrToArguments,
sd::DataType dtype) {
}
void execAggregateBatch(Nd4jPointer *extraPointers,
int numAggregates,
int opNum,
int maxArgs,
int maxShapes,
int maxIntArrays,
int maxIntArraySize,
int maxIdx,
int maxReals,
void *ptrToArguments,
sd::DataType dtype) {
}
void execRandom(Nd4jPointer *extraPointers,
int opNum,
Nd4jPointer state,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraArguments) {
try {
NativeOpExecutioner::execRandom(nullptr, opNum, state, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo, extraArguments);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execRandom3(Nd4jPointer *extraPointers,
int opNum,
Nd4jPointer state,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbY, const Nd4jLong *hYShapeInfo, const Nd4jLong *dYShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraArguments) {
try {
NativeOpExecutioner::execRandom(nullptr, opNum, state, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, dbY->primary(), hYShapeInfo, dbY->special(), dYShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo, extraArguments);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void execRandom2(Nd4jPointer *extraPointers,
int opNum,
Nd4jPointer state,
OpaqueDataBuffer *dbX, const Nd4jLong *hXShapeInfo, const Nd4jLong *dXShapeInfo,
OpaqueDataBuffer *dbZ, const Nd4jLong *hZShapeInfo, const Nd4jLong *dZShapeInfo,
void *extraArguments) {
try {
NativeOpExecutioner::execRandom(nullptr, opNum, state, dbX->primary(), hXShapeInfo, dbX->special(), dXShapeInfo, dbZ->primary(), hZShapeInfo, dbZ->special(), dZShapeInfo, extraArguments);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
Nd4jPointer initRandom(Nd4jPointer *extraPointers, long seed, long bufferSize, Nd4jPointer ptrToBuffer) {
try {
auto generator = new graph::RandomGenerator(seed, seed);
return (Nd4jPointer) generator;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
void refreshBuffer(Nd4jPointer *extraPointers, long seed, Nd4jPointer ptrRandom) {
auto generator = reinterpret_cast<sd::graph::RandomGenerator*> (ptrRandom);
generator->setStates(seed);
}
void reSeedBuffer(Nd4jPointer *extraPointers, long seed, Nd4jPointer ptrRandom) {
auto generator = reinterpret_cast<sd::graph::RandomGenerator *> (ptrRandom);
generator->setStates(seed);
}
void destroyRandom(Nd4jPointer ptrBuffer) {
auto buffer = reinterpret_cast<sd::graph::RandomGenerator*>(ptrBuffer);
delete buffer;
}
/**
* Return the length of a shape buffer
* based on the pointer
* @param buffer the buffer pointer to check
* @return
*/
int lengthForShapeBufferPointer(Nd4jPointer buffer) {
auto shapeBuffer = reinterpret_cast<Nd4jLong *>(buffer);
return shape::shapeInfoLength(shape::rank(shapeBuffer));
}
/**
* The pointer to get the address for
*
* @param address the address to get the pointer
* @return the pointer for the given address
*/
Nd4jPointer pointerForAddress(Nd4jLong address) {
return reinterpret_cast<Nd4jPointer >(address);
}
void sort(Nd4jPointer *extraPointers,
void *hX, const Nd4jLong *hXShapeInfo,
void *dX, const Nd4jLong *dXShapeInfo,
bool descending) {
try {
NativeOpExecutioner::execSort(hX, hXShapeInfo, descending);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void sortTad(Nd4jPointer *extraPointers,
void *hX, const Nd4jLong *hXShapeInfo,
void *dX, const Nd4jLong *dXShapeInfo,
int *dimension, int dimensionLength,
const Nd4jLong *tadShapeInfo,
const Nd4jLong *tadOffsets,
bool descending) {
try {
NativeOpExecutioner::execSort(hX, hXShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffsets, descending);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void sortCooIndices(Nd4jPointer *extraPointers,
Nd4jLong *indices,
void *values,
Nd4jLong length,
int rank) {
try {
NativeOpExecutioner::execSortCooIndices(indices, values, length, rank);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
Nd4jLong encodeBitmap(Nd4jPointer *extraPointers, void *hX, Nd4jLong const* hXShapeInfo, Nd4jLong N, int *dz, float threshold) {
return NativeOpExecutioner::encodeBitmap(hX, hXShapeInfo, N, dz, threshold);
}
Nd4jLong* mmapFile(Nd4jPointer *extraPointers, const char *fileName, Nd4jLong length) {
auto hZ = new Nd4jLong[2];errno = 0;
try {
#if defined(_WIN32) || defined(_WIN64)
_mmap(hZ, static_cast<size_t>(length), fileName);
#else
int fd = open(fileName, O_RDWR, 0);// checking for failed fopen
if (fd < 0) {
nd4j_printf("Errno: %i\n", errno);
throw std::runtime_error("Failed to open file for MMAP");
}
void *ptr = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
// check for failed allocation
if (ptr == MAP_FAILED)
return nullptr;
hZ[0] = (Nd4jLong) ptr;
hZ[1] = fd;
#endif
return hZ;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
void munmapFile(Nd4jPointer *extraPointers, Nd4jLong *ptrMap, Nd4jLong length) {
munmap((Nd4jPointer) ptrMap[0], length);
#if defined(_WIN32) || defined(_WIN64)
CloseHandle(reinterpret_cast<HANDLE>(ptrMap[1]));
#else
close((int) ptrMap[1]);
#endif
delete[] ptrMap;
}
sd::graph::ResultWrapper* executeFlatGraph(Nd4jPointer *extraPointers, Nd4jPointer flatBufferPointer) {
try {
return sd::graph::GraphExecutioner::executeFlatBuffer(flatBufferPointer);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
Nd4jLong getResultWrapperSize(sd::graph::ResultWrapper* ptr) {
return ptr->size();
}
Nd4jPointer getResultWrapperPointer(sd::graph::ResultWrapper* ptr) {
return ptr->pointer();
}
const char* getAllCustomOps() {
return sd::ops::OpRegistrator::getInstance().getAllCustomOperations();
}
template <typename T>
FORCEINLINE int estimateThresholdGeneric(Nd4jPointer *extraPointers, Nd4jPointer hX, int N, T threshold) {
auto buffer = reinterpret_cast<T *>(hX);
int span = (N / 6) + 8;
auto func = PRAGMA_REDUCE_LONG {
int64_t cnt = 0;
PRAGMA_OMP_SIMD
for (auto e = start; e < stop; e++) {
auto v = sd::math::nd4j_abs<T>(buffer[e]);
if (v >= threshold)
cnt++;
}
return cnt;
};
return samediff::Threads::parallel_long(func, LAMBDA_AL { return _old + _new; }, 0, N);
}
int estimateThreshold(Nd4jPointer *extraPointers, Nd4jPointer hX, Nd4jLong const* hXShapeInfo, int N, float threshold) {
try {
auto xType = ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, return estimateThresholdGeneric, (extraPointers, hX, N, threshold), FLOAT_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return 0;
}
}
Nd4jLong getShapeListSize(sd::ShapeList* list) {
return list->size();
}
Nd4jLong const* getShape(sd::ShapeList* list, Nd4jLong i) {
return const_cast<Nd4jLong const*>(list->at(i));
}
void deleteShapeList(Nd4jPointer shapeList) {
auto list = reinterpret_cast<sd::ShapeList*>(shapeList);
//list->destroy();
delete list;
}
sd::ShapeList* _calculateOutputShapes(Nd4jPointer* extraPointers, sd::ops::DeclarableOp* op, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool *bArgs, int numBArgs, int *dArgs, int numDArgs) {
sd::graph::VariableSpace varSpace;
Context block(2, &varSpace);
sd::ShapeList inShapes;
for (int e = 0; e < numIArgs; e++)
block.getIArguments()->push_back(iArgs[e]);
for (int e = 0; e < numTArgs; e++)
block.getTArguments()->push_back(tArgs[e]);
for (int e = 0; e < numBArgs; e++)
block.getBArguments()->push_back(bArgs[e]);
for (int e = 0; e < numDArgs; e++)
block.getDArguments()->push_back((sd::DataType) dArgs[e]);
for (int e = 0; e < numInputShapes; e++) {
auto shape_ = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
// we shouldn't copy buffer if that's empty array
void *buffer_ = sd::ArrayOptions::arrayType(shape_) == ArrayType::EMPTY ? nullptr : inputBuffers[e];
auto array = new sd::NDArray(buffer_, shape_, varSpace.launchContext(), false);
// block should contain references to proper variable
varSpace.putVariable(1, e, array);
block.pickInput(1, e);
inShapes.push_back(shape_);
}
auto status = op->validateDataTypes(block);
if (status != Status::OK())
throw std::runtime_error("Data types validation failed");
auto shapeList = op->calculateOutputShape(&inShapes, block);
if (varSpace.launchContext() != nullptr)
shapeList->detach();
return shapeList;
}
sd::ShapeList* calculateOutputShapes2(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool *bArgs, int numBArgs, int *dArgs, int numDArgs) {
try {
auto op = sd::ops::OpRegistrator::getInstance().getOperation(hash);
return _calculateOutputShapes(extraPointers, op, inputBuffers, inputShapes, numInputShapes, tArgs, numTArgs, iArgs, numIArgs, bArgs, numBArgs, dArgs, numDArgs);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
sd::ShapeList* _calculateOutputShapes(Nd4jPointer* extraPointers, sd::ops::DeclarableOp *op, Nd4jPointer* inputShapes, int numInputShapes, double *tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs) {
Context block(1);
sd::ShapeList inShapes;
for (int e = 0; e < numIArgs; e++)
block.getIArguments()->push_back(iArgs[e]);
for (int e = 0; e < numTArgs; e++)
block.getTArguments()->push_back(tArgs[e]);
for (int e = 0; e < numInputShapes; e++)
inShapes.push_back(reinterpret_cast<Nd4jLong *>(inputShapes[e]));
auto shapeList = op->calculateOutputShape(&inShapes, block);
shapeList->detach();
return shapeList;
}
sd::ShapeList* calculateOutputShapes(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs) {
try {
auto op = sd::ops::OpRegistrator::getInstance().getOperation(hash);
return _calculateOutputShapes(extraPointers, op, inputShapes, numInputShapes, tArgs, numTArgs, iArgs, numIArgs);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
int execCustomOp2(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer opContext) {
try {
auto op = sd::ops::OpRegistrator::getInstance().getOperation(hash);
auto context = reinterpret_cast<Context *>(opContext);
return op->execute(context);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return 20;
}
}
Nd4jStatus realExec(sd::ops::DeclarableOp* op, Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputs, Nd4jPointer* outputBuffers, Nd4jPointer* outputShapes, int numOutputs, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool* bArgs, int numBArgs, bool isInplace) {
if (op == nullptr)
nd4j_printf("Can't find requested operation: [%lld]\n", hash);
// we're using the same fake nodeId everywhere here
std::vector<sd::NDArray*> inputs(numInputs);
std::vector<sd::NDArray*> outputs(numOutputs);
std::vector<double> ttArgs(numTArgs);
std::vector<Nd4jLong> iiArgs(numIArgs);
std::vector<bool> biArgs(numBArgs);
// filling block now with inputs
for (int e = 0; e < numInputs; e++) {
auto shape = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
void *buffer = sd::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : inputBuffers[e];
inputs[e] = new sd::NDArray(buffer, shape);
}
// if not inplace - transferring output arrays
if (!isInplace)
for (int e = 0; e < numOutputs; e++) {
// we want to keep original output shape intact
auto shape = shape::copyShape(reinterpret_cast<Nd4jLong *>(outputShapes[e]));
void *buffer = sd::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : outputBuffers[e];
// FIXME: revisit this.
bool canNullify = true;
for (int i = 0; i < numInputs; i++) {
void *ibuffer = sd::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : inputBuffers[i];
if (ibuffer == buffer) {
canNullify = false;
break;
}
}
if (canNullify)
memset((uint8_t *) buffer, '\0', shape::length(shape) * DataTypeUtils::sizeOfElement(ArrayOptions::dataType(shape)));
auto array = new sd::NDArray(buffer, shape);
outputs[e] = array;
// and we want to release shape copy once we're done
delete []shape;
}
for (int e = 0; e < numIArgs; e++)
iiArgs[e] = iArgs[e];
for (int e = 0; e < numTArgs; e++)
ttArgs[e] = tArgs[e];
for (int e = 0; e < numBArgs; e++)
biArgs[e] = bArgs[e];
// hypothetically at this point we have everything filled
auto hZ = op->execute(inputs, outputs, ttArgs, iiArgs, biArgs, std::vector<sd::DataType>(), isInplace);
//auto hZ = op->execute(inputs, ttArgs, iiArgs, isInplace);
if (!isInplace)
for (int e = 0; e < numOutputs; e++) {
//shape::printShapeInfoLinear("JVM output shape", (int *) outputShapes[e]);
//shape::printShapeInfoLinear("C++ output shape", (int *) outputs[e]->shapeInfo());
//outputs[e]->printIndexedBuffer("C++ raw output");
//outputs[e]->printBuffer("C++ indexed output");
if (outputs[e]->ordering() != shape::order(reinterpret_cast<Nd4jLong *>(outputShapes[e])))
outputs[e]->streamline(shape::order(reinterpret_cast<Nd4jLong *>(outputShapes[e])));
}
for (auto v: inputs)
delete v;
for (auto v: outputs)
delete v;
return hZ;
}
int execCustomOp(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputs, Nd4jPointer* outputBuffers, Nd4jPointer* outputShapes, int numOutputs, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool* bArgs, int numBArgs, bool isInplace) {
try {
auto op = sd::ops::OpRegistrator::getInstance().getOperation(hash);
return realExec(op, extraPointers, hash, inputBuffers, inputShapes, numInputs, outputBuffers, outputShapes, numOutputs, tArgs, numTArgs, iArgs, numIArgs, bArgs, numBArgs, isInplace);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return 1;
}
}
int registerGraph(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer flatBufferPointer) {
try {
auto graph = sd::graph::GraphExecutioner::importFromFlatPointer(flatBufferPointer);
sd::graph::GraphHolder::getInstance().registerGraph(graphId, graph);
return ND4J_STATUS_OK;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return 1;
}
}
static VariablesSet* executeStoredGraphT(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int* inputIndices, int numInputs) {
auto graph = sd::graph::GraphHolder::getInstance().cloneGraph(graphId);
auto varSpace = graph->getVariableSpace();
std::vector<sd::NDArray*> handles;
for (int e = 0; e < numInputs; e++) {
auto idx = inputIndices[e];
// we'll delete this array later, together with cloned VariableSpace
auto array = new sd::NDArray(inputBuffers[e], reinterpret_cast<Nd4jLong *>(inputShapes[e]));
handles.emplace_back(array);
if (varSpace->hasVariable(idx)) {
auto var = varSpace->getVariable(idx);
if (var->hasNDArray())
delete var->getNDArray();
var->setNDArray(array);
} else
varSpace->putVariable(idx, array);
}
auto hZ = sd::graph::GraphExecutioner::execute(graph, varSpace);
auto varSet = new sd::graph::VariablesSet(hZ);
if (hZ == ND4J_STATUS_OK) {
// pull back results, and provide them
auto outputs = graph->fetchOutputs();
for (int e = 0; e < outputs->size(); e++) {
// we're only getting variable ID/Index from original grap. values will be taken from cloned workspace
std::pair<int, int> varId(outputs->at(e)->id(), outputs->at(e)->index());
auto var = varSpace->getVariable(varId);
varSet->push_back(var->clone());
}
delete outputs;
}
delete graph;
return varSet;
}
sd::graph::VariablesSet* executeStoredGraph(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int* inputIndices, int numInputs) {
return nullptr;
}
Nd4jLong getVariablesSetSize(sd::graph::VariablesSet* set) {
return set->size();
}
Nd4jStatus getVariablesSetStatus(sd::graph::VariablesSet* set) {
return set->status();
}
sd::graph::Variable* getVariable(sd::graph::VariablesSet* set, Nd4jLong i) {
return set->at(i);
}
int getVariableId(sd::graph::Variable* variable) {
return variable->id();
}
int getVariableIndex(sd::graph::Variable* variable) {
return variable->index();
}
const char* getVariableName(sd::graph::Variable* variable) {
return variable->getName()->c_str();
}
Nd4jLong const* getVariableShape(sd::graph::Variable* variable) {
return const_cast<Nd4jLong const*>(variable->getNDArray()->shapeInfo());
}
void* getVariableBuffer(sd::graph::Variable* variable) {
return variable->getNDArray()->buffer();
}
int unregisterGraph(Nd4jPointer *extraPointers, Nd4jLong graphId) {
sd::graph::GraphHolder::getInstance().dropGraphAny(graphId);
return sd::Status::OK();
}
void deletePointerArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<Nd4jPointer *>(pointer);
delete[] ptr;
}
void deleteCharArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<char *>(pointer);
delete[] ptr;
}
void deleteIntArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<int *>(pointer);
delete[] ptr;
}
void deleteLongArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<Nd4jLong *>(pointer);
delete[] ptr;
}
void deleteVariablesSet(sd::graph::VariablesSet* pointer) {
delete pointer;
}
const char* getAllOperations() {
return sd::OpTracker::getInstance().exportOperations();
}
Nd4jPointer getGraphState(Nd4jLong id) {
return (Nd4jPointer) new sd::graph::GraphState(id);
}
void deleteGraphState(Nd4jPointer state) {
auto stateP = reinterpret_cast<sd::graph::GraphState*>(state);
delete stateP;
}
Nd4jStatus execCustomOpWithScope_(Nd4jPointer *extraPointers, sd::graph::GraphState *state, Nd4jLong opHash, Nd4jLong *scopes, int numScopes, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int numInputs, Nd4jPointer *outputBuffers, Nd4jPointer *outputShapes, int numOutputs) {
/**
* That's basically exec, with VariableSpace provided in GraphState:
* depending on operation (i.e. while of if), different logic executors could be used
*/
auto graph = state->graph();
auto varSpace = state->variableSpace();
// Node is dynamically created, and has nothing beyond it: only inputs and outputs
// this node has id of 0, and inputs are
Node node(OpType_LOGIC, opHash, 0);
// mapping inputs
for (int e = 0; e < numInputs; e++) {
auto buffer = inputBuffers[e];
auto shapeInfo = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
auto array = new sd::NDArray(buffer, shapeInfo, varSpace->launchContext());
// now we just put array to VarSpace
varSpace->putVariable(0, e, array);
node.pickInput(0, e);
}
// mapping scopes
for (int e = 0; e < numScopes; e++) {
// we should check scope existence in GraphState/Graph
int scopeId = (int) scopes[e];
if (!state->hasScope(scopeId)) {
// nd4j_printf("execCustomOpWithScope: referenced scope [%i] doesn't exist\n", scopeId);
return Status::THROW();
}
node.pickInput(scopeId, 0);
}
auto hZ = LogicExecutor::processNode(graph, &node);
if (hZ != Status::OK())
return hZ;
// mapping outputs
for (int e = 0; e < numOutputs; e++) {
auto buffer = outputBuffers[e];
auto shapeInfo = reinterpret_cast<Nd4jLong *>(outputShapes[e]);
NDArray array(buffer, shapeInfo, varSpace->launchContext());
// now we just put array to VarSpace to the same ID
//varSpace->putVariable(0, e, array);
auto t = varSpace->getVariable(0, e)->getNDArray();
array.assign(t);
}
// removing input variables
for (int e = 0; e < numInputs; e++) {
varSpace->dropVariable(0, e);
}
// after some bla-bla-bla we should have Graph and Node for current op
return Status::OK();
}
Nd4jStatus execCustomOpWithScope(Nd4jPointer *extraPointers, Nd4jPointer state, Nd4jLong opHash, Nd4jLong *scopes, int numScopes, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int numInputs, Nd4jPointer *outputBuffers, Nd4jPointer *outputShapes, int numOutputs) {
try {
return execCustomOpWithScope_(extraPointers, reinterpret_cast<sd::graph::GraphState *>(state), opHash, scopes, numScopes, inputBuffers, inputShapes, numInputs, outputBuffers, outputShapes, numOutputs);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return 1;
}
}
void deleteResultWrapper(Nd4jPointer ptr) {
// just 0 room for compiler s@!t
auto p = reinterpret_cast<sd::graph::ResultWrapper *>(ptr);
delete p;
}
/*
* TypeDef:
* void convertTypes(Nd4jPointer *extras, int srcType, Nd4jPointer hX, long N, int dstType, Nd4jPointer hZ);
*/
void convertTypes(Nd4jPointer *extras, int srcType, Nd4jPointer hX, Nd4jLong N, int dstType, Nd4jPointer hZ) {
auto hx = reinterpret_cast<void *>(hX);
auto hz = reinterpret_cast<void *>(hZ);
if (srcType == ND4J_FLOAT8) {
if (dstType == ND4J_FLOAT8) {
// convertGeneric<double, sd::float8>(hx, N, hz);
} else if (dstType == ND4J_INT8) {
//sd::TypeCast::convertGeneric<sd::float8, sd::int8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
//sd::TypeCast::convertGeneric<sd::float8, sd::uint8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
//sd::TypeCast::convertGeneric<sd::float8, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
//sd::TypeCast::convertGeneric<sd::float8, sd::int16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
//sd::TypeCast::convertGeneric<sd::float8, sd::uint16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_FLOAT32) {
//sd::TypeCast::convertGeneric<sd::float8, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
//sd::TypeCast::convertGeneric<sd::float8, double>(nullptr, hx, N, hz);
} else {
//nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_INT8) {
if (dstType == ND4J_FLOAT8) {
//sd::TypeCast::convertGeneric<sd::int8, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
//convertGeneric<sd::int8, sd::int8>(hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<int8_t, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<int8_t, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
sd::TypeCast::convertGeneric<int8_t, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
//sd::TypeCast::convertGeneric<int8_t, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: eventually we might want to add it
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertGeneric<int8_t, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertGeneric<int8_t, double>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_UINT8) {
if (dstType == ND4J_FLOAT8) {
// sd::TypeCast::convertGeneric<uint8_t, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
sd::TypeCast::convertGeneric<uint8_t, int8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<uint8_t, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<uint8_t, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
sd::TypeCast::convertGeneric<uint8_t, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
// sd::TypeCast::convertGeneric<uint8_t, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: still might want to add
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertGeneric<uint8_t, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertGeneric<uint8_t, double>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_FLOAT16) {
if (dstType == ND4J_FLOAT8) {
// sd::TypeCast::convertGeneric<float16, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
sd::TypeCast::convertGeneric<float16, int8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<float16, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<float16, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
sd::TypeCast::convertGeneric<float16, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
// sd::TypeCast::convertGeneric<float16, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: .... ^^^
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertGeneric<float16, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertGeneric<float16, double>(nullptr, hx, N, hz);
} else if (dstType == ND4J_THRESHOLD) {
sd::TypeCast::convertToThreshold<float16>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_INT16) {
if (dstType == ND4J_FLOAT8) {
// sd::TypeCast::convertGeneric<int16_t, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
sd::TypeCast::convertGeneric<int16_t, int8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<int16_t, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<int16_t, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
//sd::TypeCast::convertGeneric<int16_t, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
// sd::TypeCast::convertGeneric<int16_t, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
// TODO...
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertGeneric<int16_t, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertGeneric<int16_t, double>(nullptr, hx, N, hz);
} else {
printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_FLOAT24) {
} else if (srcType == ND4J_FLOAT32) {
if (dstType == ND4J_FLOAT8) {
// sd::TypeCast::convertGeneric<float, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
sd::TypeCast::convertGeneric<float, int8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<float, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<float, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
sd::TypeCast::convertGeneric<float, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
// sd::TypeCast::convertGeneric<float, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertGeneric<float, double>(nullptr, hx, N, hz);
} else if (dstType == ND4J_THRESHOLD) {
sd::TypeCast::convertToThreshold<float>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_DOUBLE) {
if (dstType == ND4J_FLOAT8) {
// sd::TypeCast::convertGeneric<double, sd::float8>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT8) {
sd::TypeCast::convertGeneric<double, int8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT8) {
sd::TypeCast::convertGeneric<double, uint8_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertGeneric<double, float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_INT16) {
sd::TypeCast::convertGeneric<double, int16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_UINT16) {
// sd::TypeCast::convertGeneric<double, uint16_t>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertGeneric<double, float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
//
} else if (dstType == ND4J_THRESHOLD) {
sd::TypeCast::convertToThreshold<double>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_THRESHOLD) {
if (dstType == ND4J_FLOAT16) {
sd::TypeCast::convertFromThreshold<float16>(nullptr, hx, N, hz);
} else if (dstType == ND4J_FLOAT32) {
sd::TypeCast::convertFromThreshold<float>(nullptr, hx, N, hz);
} else if (dstType == ND4J_DOUBLE) {
sd::TypeCast::convertFromThreshold<double>(nullptr, hx, N, hz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
}
/*
void fillUtf8String(Nd4jPointer *extraPointers, const char **strings, int numStrings, Nd4jPointer buffer) {
auto hZ = reinterpret_cast<sd::utf8string**>(buffer);
for (int e = 0; e < numStrings; e++) {
hZ[e] = reinterpret_cast<sd::utf8string*>(createUtf8String(extraPointers, strings[e]));
}
}
*/
Nd4jPointer createUtf8String(Nd4jPointer *extraPointers, const char *string, int length) {
auto u = new sd::utf8string(string, length);
return reinterpret_cast<Nd4jPointer>(u);
}
Nd4jLong getUtf8StringLength(Nd4jPointer *extraPointers, Nd4jPointer ptr) {
return reinterpret_cast<sd::utf8string*>(ptr)->_length;
}
char* getUtf8StringBuffer(Nd4jPointer *extraPointers, Nd4jPointer ptr) {
return reinterpret_cast<sd::utf8string*>(ptr)->_buffer;
}
void deleteUtf8String(Nd4jPointer *extraPointers, Nd4jPointer ptr) {
delete(reinterpret_cast<sd::utf8string*>(ptr));
}
template <typename I>
static void _scatterUpdate(
Nd4jPointer *extraPointers, int opCode, int numOfSubArrs,
void* hX, const Nd4jLong* hXShapeInfo, const Nd4jLong* hXOffsets,
void* dX, const Nd4jLong* dXShapeInfo, const Nd4jLong* dXOffsets,
void* hY, const Nd4jLong* hYShapeInfo, const Nd4jLong* hYOffsets,
void* dY, const Nd4jLong* dYShapeInfo, const Nd4jLong* dYOffsets,
void* vIindexes, const Nd4jLong* hIndicesShapeInfo, void* dIindexes, const Nd4jLong* dIndicesShapeInfo) {
auto hIindexes = reinterpret_cast<I*>(vIindexes);
auto func = PRAGMA_THREADS_DO {
for (int i = 0; i < numOfSubArrs; ++i) {
int threadIndex = thread_id;
const auto xIndex = hIindexes[i];
const bool isOwner = xIndex < numThreads ? threadIndex == xIndex : threadIndex == xIndex % numThreads;
if (!isOwner)
continue;
NDArray inSubArr(reinterpret_cast<int8_t *>(hX) + (hXOffsets[hIindexes[i]] * DataTypeUtils::sizeOf(hXShapeInfo)), hXShapeInfo);
NDArray updSubArr(reinterpret_cast<int8_t *>(hY) + (hYOffsets[i] * DataTypeUtils::sizeOf(hXShapeInfo)), hYShapeInfo);
if (inSubArr.lengthOf() != updSubArr.lengthOf()) {
continue;
}
switch (opCode) {
case 0:
inSubArr.applyPairwiseTransform(pairwise::Add, updSubArr, inSubArr);
break;
case 1:
inSubArr.applyPairwiseTransform(pairwise::Subtract, updSubArr, inSubArr);
break;
case 2:
inSubArr.applyPairwiseTransform(pairwise::Multiply, updSubArr, inSubArr);
break;
case 3:
inSubArr.applyPairwiseTransform(pairwise::Divide, updSubArr, inSubArr);
break;
case 4:
inSubArr.applyPairwiseTransform(pairwise::ReverseSubtract, updSubArr, inSubArr);
break;
case 5:
inSubArr.applyPairwiseTransform(pairwise::ReverseDivide, updSubArr, inSubArr);
break;
case 6:
inSubArr.applyPairwiseTransform(pairwise::CopyPws, updSubArr, inSubArr);
break;
default:
continue;
}
}
};
samediff::Threads::parallel_do(func);
}
////////////////////////////////////////////////////////////////////////
void scatterUpdate(Nd4jPointer *extraPointers, int opCode, int numOfSubArrs,
void* hX, const Nd4jLong* hXShapeInfo, const Nd4jLong* hXOffsets,
void* dX, const Nd4jLong* dXShapeInfo, const Nd4jLong* dXOffsets,
void* hY, const Nd4jLong* hYShapeInfo, const Nd4jLong* hYOffsets,
void* dY, const Nd4jLong* dYShapeInfo, const Nd4jLong* dYOffsets,
void* hIindexes, const Nd4jLong* hIndicesShapeInfo, void* dIindexes, const Nd4jLong* dIndicesShapeInfo) {
auto iType = ArrayOptions::dataType(hIndicesShapeInfo);
try {
BUILD_SINGLE_SELECTOR(iType, _scatterUpdate, (extraPointers, opCode, numOfSubArrs, hX, hXShapeInfo, hXOffsets, dX, dXShapeInfo, dXOffsets, hY, hYShapeInfo, hYOffsets, dY, dYShapeInfo, dYOffsets, hIindexes, hIndicesShapeInfo, dIindexes, dIndicesShapeInfo), INDEXING_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void inspectArray(Nd4jPointer *extraPointers, Nd4jPointer buffer, Nd4jLong *shapeInfo, Nd4jPointer specialBuffer, Nd4jLong *specialShapeInfo, Nd4jPointer debugInfo) {
try {
auto p = reinterpret_cast<sd::DebugInfo *>(debugInfo);
NDArray array(buffer, shapeInfo);
sd::DebugHelper::retrieveDebugStatistics(p, &array);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void tryPointer(Nd4jPointer extra, Nd4jPointer p, int len) {
try {
auto buf = reinterpret_cast<int8_t *>(p);
int cnt = 0;
for (int i = 0; i < len; i++)
cnt += buf[cnt];
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
sd::ConstantShapeBuffer* shapeBuffer(int rank, Nd4jLong *shape, Nd4jLong *strides, sd::DataType dtype, char order, Nd4jLong ews, bool empty) {
try {
auto buffer = new ConstantShapeBuffer();
*buffer = sd::ConstantShapeHelper::getInstance().bufferForShapeInfo(
ShapeDescriptor(dtype, order, shape, strides, rank, ews, empty));
return buffer;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
void deleteConstantShapeBuffer(sd::ConstantShapeBuffer* ptr) {
delete ptr;
}
void deleteConstantDataBuffer(sd::ConstantDataBuffer* ptr) {
delete ptr;
}
void deleteTadPack(sd::TadPack* ptr) {
delete ptr;
}
sd::ConstantDataBuffer* constantBufferLong(sd::DataType dtype, const Nd4jLong *data, int length) {
return nullptr;
}
sd::ConstantDataBuffer* constantBufferDouble(sd::DataType dtype, double *data, int length) {
return nullptr;
}
sd::ConstantDataBuffer* constantBuffer(sd::DataType dtype, sd::ConstantDescriptor *descriptor) {
try {
return sd::ConstantHelper::getInstance().constantBuffer(*descriptor, dtype);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
Nd4jPointer getConstantShapeBufferPrimary(sd::ConstantShapeBuffer* dbf) {
return const_cast<Nd4jLong*>(dbf->primary());
}
Nd4jPointer getConstantShapeBufferSpecial(sd::ConstantShapeBuffer* dbf) {
return const_cast<Nd4jLong*>(dbf->special());
}
Nd4jPointer getConstantDataBufferPrimary(sd::ConstantDataBuffer* dbf) {
return dbf->primary();
}
Nd4jPointer getConstantDataBufferSpecial(sd::ConstantDataBuffer* dbf) {
return dbf->special();
}
Nd4jLong getConstantDataBufferLength(sd::ConstantDataBuffer* dbf) {
return dbf->length();
}
Nd4jLong getConstantDataBufferSizeOf(sd::ConstantDataBuffer* dbf) {
return dbf->sizeOf();
}
sd::graph::Context* createGraphContext(int nodeId) {
try {
return new sd::graph::Context(nodeId);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
sd::graph::RandomGenerator* getGraphContextRandomGenerator(sd::graph::Context* ptr) {
return &ptr->randomGenerator();
}
void markGraphContextInplace(sd::graph::Context* ptr, bool reallyInplace) {
ptr->markInplace(reallyInplace);
}
void setGraphContextCudaContext(sd::graph::Context* ptr, void *stream, void *reductionPointer, void *allocationPointer) {
}
void setGraphContextInputArray(sd::graph::Context* ptr, int index, void *buffer, void *shapeInfo, void *specialBuffer, void *specialShapeInfo) {
ptr->setInputArray(index, buffer, shapeInfo, specialBuffer, specialShapeInfo);
}
void setGraphContextOutputArray(sd::graph::Context* ptr, int index, void *buffer, void *shapeInfo, void *specialBuffer, void *specialShapeInfo) {
ptr->setOutputArray(index, buffer, shapeInfo, specialBuffer, specialShapeInfo);
}
void setGraphContextInputBuffer(OpaqueContext* ptr, int index, OpaqueDataBuffer *buffer, void *shapeInfo, void *specialShapeInfo) {
ptr->setInputArray(index, buffer, shapeInfo, specialShapeInfo);
}
void setGraphContextOutputBuffer(OpaqueContext* ptr, int index, OpaqueDataBuffer *buffer, void *shapeInfo, void *specialShapeInfo) {
ptr->setOutputArray(index, buffer, shapeInfo, specialShapeInfo);
}
void setGraphContextTArguments(sd::graph::Context* ptr, double *arguments, int numberOfArguments) {
ptr->setTArguments(arguments, numberOfArguments);
}
void setGraphContextIArguments(sd::graph::Context* ptr, Nd4jLong *arguments, int numberOfArguments) {
ptr->setIArguments(arguments, numberOfArguments);
}
void setGraphContextBArguments(sd::graph::Context* ptr, bool *arguments, int numberOfArguments) {
ptr->setBArguments(arguments, numberOfArguments);
}
void setGraphContextDArguments(OpaqueContext* ptr, int *arguments, int numberOfArguments) {
std::vector<sd::DataType> dtypes(numberOfArguments);
for (int e = 0; e < numberOfArguments; e++)
dtypes[e] = (sd::DataType) arguments[e];
ptr->setDArguments(dtypes);
}
void deleteGraphContext(sd::graph::Context* ptr) {
delete ptr;
}
void ctxAllowHelpers(OpaqueContext* ptr, bool reallyAllow) {
ptr->allowHelpers(reallyAllow);
}
void ctxSetExecutionMode(OpaqueContext* ptr, int execMode) {
if (execMode < 0 || execMode > 2)
execMode = 0;
ptr->setExecutionMode((samediff::ExecutionMode) execMode);
}
void ctxPurge(OpaqueContext* ptr) {
ptr->clearFastPath();
}
sd::graph::RandomGenerator* createRandomGenerator(Nd4jLong rootSeed, Nd4jLong nodeSeed) {
return new sd::graph::RandomGenerator(rootSeed, nodeSeed);
}
Nd4jLong getRandomGeneratorRootState(sd::graph::RandomGenerator* ptr) {
return ptr->rootState();
}
Nd4jLong getRandomGeneratorNodeState(sd::graph::RandomGenerator* ptr) {
return ptr->nodeState();
}
void setRandomGeneratorStates(sd::graph::RandomGenerator* ptr, Nd4jLong rootSeed, Nd4jLong nodeSeed) {
ptr->setStates(rootSeed, nodeSeed);
}
float getRandomGeneratorRelativeFloat(sd::graph::RandomGenerator* ptr, Nd4jLong index) {
return ptr->relativeT<float>(index);
}
double getRandomGeneratorRelativeDouble(sd::graph::RandomGenerator* ptr, Nd4jLong index) {
return ptr->relativeT<double>(index);
}
int getRandomGeneratorRelativeInt(sd::graph::RandomGenerator* ptr, Nd4jLong index) {
return ptr->relativeInt(index);
}
Nd4jLong getRandomGeneratorRelativeLong(sd::graph::RandomGenerator* ptr, Nd4jLong index) {
return ptr->relativeLong(index);
}
void deleteRandomGenerator(sd::graph::RandomGenerator* ptr) {
delete ptr;
}
int dataTypeFromNpyHeader(void *header) {
return (int) cnpy::dataTypeFromHeader(reinterpret_cast<char *>(header));
}
Nd4jPointer shapeBufferForNumpy(Nd4jPointer npyArray) {
try {
cnpy::NpyArray arr = cnpy::loadNpyFromPointer(reinterpret_cast<char *>(npyArray));
unsigned int shapeSize = arr.shape.size();
std::vector<Nd4jLong> shape(shapeSize);
bool _empty = false;
for (unsigned int i = 0; i < shapeSize; i++) {
shape[i] = arr.shape[i];
if (arr.shape[i] == 0)
_empty = true;
}
auto dtype = cnpy::dataTypeFromHeader(reinterpret_cast<char *>(npyArray));
Nd4jLong *shapeBuffer;
if (shape.size() == 1 && shape[0] == 0) {
// scalar case
shapeBuffer = sd::ShapeBuilders::createScalarShapeInfo(dtype);
} else if (_empty) {
if (shapeSize > 0)
shapeBuffer = sd::ShapeBuilders::emptyShapeInfo(dtype, arr.fortranOrder ? 'f' : 'c', shape);
else
shapeBuffer = sd::ShapeBuilders::emptyShapeInfo(dtype);
} else {
shapeBuffer = sd::ShapeBuilders::createShapeInfo(dtype, arr.fortranOrder ? 'f' : 'c', shape);
}
return const_cast<Nd4jLong*>(sd::ConstantShapeHelper::getInstance().createFromExisting(shapeBuffer, true));
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
void sortByKey(Nd4jPointer *extraPointers,
void *x, const Nd4jLong *xShapeInfo,
void *dx, const Nd4jLong *dxShapeInfo,
void *y, const Nd4jLong *yShapeInfo,
void *dy, const Nd4jLong *dyShapeInfo,
bool descending) {
try {
auto xType = ArrayOptions::dataType(xShapeInfo);
auto yType = ArrayOptions::dataType(yShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, sd::DoubleMethods, ::sortByKey(x, xShapeInfo, y, yShapeInfo, descending), LIBND4J_TYPES, LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void sortByValue(Nd4jPointer *extraPointers,
void *x, const Nd4jLong *xShapeInfo,
void *dx, const Nd4jLong *dxShapeInfo,
void *y, const Nd4jLong *yShapeInfo,
void *dy, const Nd4jLong *dyShapeInfo,
bool descending) {
try {
auto xType = ArrayOptions::dataType(xShapeInfo);
auto yType = ArrayOptions::dataType(yShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, sd::DoubleMethods, ::sortByValue(x, xShapeInfo, y, yShapeInfo, descending), LIBND4J_TYPES, LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void sortTadByKey(Nd4jPointer *extraPointers,
void *x, const Nd4jLong *xShapeInfo,
void *dx, const Nd4jLong *dxShapeInfo,
void *y, const Nd4jLong *yShapeInfo,
void *dy, const Nd4jLong *dyShapeInfo,
int *dimension, int dimensionLength,
bool descending) {
try {
auto xType = ArrayOptions::dataType(xShapeInfo);
auto yType = ArrayOptions::dataType(yShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, sd::DoubleMethods, ::sortTadByKey(x, xShapeInfo, y, yShapeInfo, dimension, dimensionLength, descending), LIBND4J_TYPES, LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
void sortTadByValue(Nd4jPointer *extraPointers,
void *x, const Nd4jLong *xShapeInfo,
void *dx, const Nd4jLong *dxShapeInfo,
void *y, const Nd4jLong *yShapeInfo,
void *dy, const Nd4jLong *dyShapeInfo,
int *dimension, int dimensionLength,
bool descending) {
try {
auto xType = ArrayOptions::dataType(xShapeInfo);
auto yType = ArrayOptions::dataType(yShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, sd::DoubleMethods, ::sortTadByValue(x, xShapeInfo, y, yShapeInfo, dimension, dimensionLength, descending), LIBND4J_TYPES, LIBND4J_TYPES);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
const char* runLightBenchmarkSuit(bool printOut) {
try {
sd::LightBenchmarkSuit suit;
auto result = suit.runSuit();
if (printOut)
nd4j_printf("%s\n", result.data());
auto chars = new char[result.length() + 1];
std::memcpy(chars, result.data(), result.length());
chars[result.length()] = (char) 0x0;
return chars;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
Nd4jLong getCachedMemory(int deviceId) {
return sd::ConstantHelper::getInstance().getCachedAmount(deviceId);
}
const char* runFullBenchmarkSuit(bool printOut) {
try {
sd::FullBenchmarkSuit suit;
auto result = suit.runSuit();
if (printOut)
nd4j_printf("%s\n", result.data());
auto chars = new char[result.length() + 1];
std::memcpy(chars, result.data(), result.length());
chars[result.length()] = (char) 0x0;
return chars;
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
sd::LaunchContext* defaultLaunchContext() {
return LaunchContext::defaultContext();
}
Nd4jPointer lcScalarPointer(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcReductionPointer(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcAllocationPointer(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcExecutionStream(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcCopyStream(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcBlasHandle(OpaqueLaunchContext* lc) {
return nullptr;
}
Nd4jPointer lcSolverHandle(OpaqueLaunchContext* lc) {
return nullptr;
}
int lastErrorCode() {
return sd::LaunchContext::defaultContext()->errorReference()->errorCode();
}
const char* lastErrorMessage() {
return sd::LaunchContext::defaultContext()->errorReference()->errorMessage();
}
void ctxShapeFunctionOverride(OpaqueContext* ptr, bool reallyOverride) {
ptr->setShapeFunctionOverride(reallyOverride);
}
int binaryLevel() {
#ifdef CPU_FEATURES
#if defined(F_X64)
return 1;
#elif defined (F_AVX2)
return 2;
#elif defined (F_AVX512)
return 3;
#else
return 0;
#endif
#else
return 0;
#endif
}
int optimalLevel() {
#ifdef CPU_FEATURES
auto features = cpu_features::GetX86Info().features;
if (features.avx && features.avx2 && features.avx512f && features.avx512vl && features.avx512bw && features.avx512dq && features.avx512cd)
return 3;
else if (features.avx && features.avx2)
return 2;
else
return 1;
#else
return 0;
#endif
}
bool isMinimalRequirementsMet() {
#ifdef CPU_FEATURES
auto features = cpu_features::GetX86Info().features;
#if defined(F_X64)
return true;
#elif defined (F_AVX2)
return features.avx && features.avx2;
#elif defined (F_AVX512)
// we're optimizing for skylake-avx512 features, so we'll check those out
return features.avx && features.avx2 && features.avx512f && features.avx512vl && features.avx512bw && features.avx512dq && features.avx512cd;
#else
return true;
#endif
#else
return true;
#endif
}
bool isOptimalRequirementsMet() {
#ifdef CPU_FEATURES
auto b = ::binaryLevel();
auto o = ::optimalLevel();
if (b == o)
return true;
else
return false;
#else
return true;
#endif
}
OpaqueDataBuffer* dbAllocateDataBuffer(Nd4jLong elements, int dataType, bool allocateBoth) {
return allocateDataBuffer(elements, dataType, allocateBoth);
}
OpaqueDataBuffer* allocateDataBuffer(Nd4jLong elements, int dataType, bool allocateBoth) {
try {
auto dtype = DataTypeUtils::fromInt(dataType);
return new sd::InteropDataBuffer(elements * DataTypeUtils::sizeOf(dtype) , dtype, allocateBoth);
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
return nullptr;
}
}
Nd4jPointer dbPrimaryBuffer(OpaqueDataBuffer *dataBuffer) {
return dataBuffer->primary();
}
Nd4jPointer dbSpecialBuffer(OpaqueDataBuffer *dataBuffer) {
return dataBuffer->special();
}
void deleteDataBuffer(OpaqueDataBuffer *dataBuffer) {
delete dataBuffer;
}
OpaqueDataBuffer* dbCreateExternalDataBuffer(Nd4jLong elements, int dataType, Nd4jPointer primary, Nd4jPointer special) {
auto buffer = dbAllocateDataBuffer(0, dataType, false);
if (primary != nullptr)
buffer->setPrimary(primary, elements);
if (special != nullptr)
buffer->setSpecial(special, elements);
return buffer;
}
void dbSetPrimaryBuffer(OpaqueDataBuffer *dataBuffer, Nd4jPointer primaryBuffer, Nd4jLong numBytes) {
dataBuffer->setPrimary(primaryBuffer, numBytes);
}
void dbSetSpecialBuffer(OpaqueDataBuffer *dataBuffer, Nd4jPointer specialBuffer, Nd4jLong numBytes) {
dataBuffer->setSpecial(specialBuffer, numBytes);
}
void dbAllocatePrimaryBuffer(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->allocatePrimary();
}
void dbAllocateSpecialBuffer(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->allocateSpecial();
}
void dbExpandBuffer(OpaqueDataBuffer *dataBuffer, Nd4jLong elements) {
try {
dataBuffer->dataBuffer()->expand(elements * DataTypeUtils::sizeOf(dataBuffer->dataBuffer()->getDataType()));
} catch (std::exception &e) {
sd::LaunchContext::defaultContext()->errorReference()->setErrorCode(1);
sd::LaunchContext::defaultContext()->errorReference()->setErrorMessage(e.what());
}
}
OpaqueDataBuffer* dbCreateView(OpaqueDataBuffer *dataBuffer, Nd4jLong length, Nd4jLong offset) {
return new InteropDataBuffer(*dataBuffer, length, offset);
}
void dbSyncToSpecial(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->syncToSpecial();
}
void dbSyncToPrimary(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->syncToPrimary(nullptr);
}
void dbTickHostRead(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->readPrimary();
}
void dbTickHostWrite(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->writePrimary();
}
void dbTickDeviceRead(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->readSpecial();
}
void dbTickDeviceWrite(OpaqueDataBuffer *dataBuffer) {
dataBuffer->dataBuffer()->writeSpecial();
}
void dbExpand(OpaqueDataBuffer *dataBuffer, Nd4jLong elements) {
dataBuffer->expand(elements);
}
int dbLocality(OpaqueDataBuffer *dataBuffer) {
return 0;
}
void dbSetDeviceId(OpaqueDataBuffer *dataBuffer, int deviceId) {
dataBuffer->setDeviceId(deviceId);
}
int dbDeviceId(OpaqueDataBuffer *dataBuffer) {
return dataBuffer->deviceId();
}
void dbClose(OpaqueDataBuffer *dataBuffer) {
dataBuffer->getDataBuffer()->close();
}
BUILD_SINGLE_TEMPLATE(template void pullRowsGeneric, (void *, Nd4jLong const*, void*, Nd4jLong const*, const int, Nd4jLong const*, Nd4jLong const*, Nd4jLong const*, Nd4jLong const*, Nd4jLong const*), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void tearGeneric, (void *, Nd4jLong const* , Nd4jPointer*, Nd4jLong const*, Nd4jLong const*, Nd4jLong const*), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void shuffleGeneric, (void**, Nd4jLong* const*, void**, Nd4jLong* const*, int, int*, Nd4jLong* const*, Nd4jLong* const*), LIBND4J_TYPES);