116 lines
5.5 KiB
Plaintext
116 lines
5.5 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2020 Konduit, K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
#include <system/op_boilerplate.h>
|
|
#include <array/NDArray.h>
|
|
#include <helpers/MmulHelper.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
#include <ops/declarable/helpers/triangular_solve.h>
|
|
#include <ops/declarable/helpers/lup.h>
|
|
#include <ops/declarable/helpers/qr.h>
|
|
#include <ops/declarable/helpers/lstsq.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void fillRegularizerKernel(T* ioMatrixData, const Nd4jLong* ioMatrixShape, const Nd4jLong* ioMatrixTads, const Nd4jLong* ioMatrixOffsets, Nd4jLong batchSize, Nd4jLong rows, T const value) {
|
|
|
|
for (auto x = blockIdx.x; x < batchSize; x += gridDim.x) {
|
|
auto z = ioMatrixData + ioMatrixOffsets[x];
|
|
for (auto r = threadIdx.x; r < rows; r += blockDim.x) {
|
|
Nd4jLong pos[] = {r,r};
|
|
auto zIndex = shape::getOffset(ioMatrixTads, pos);
|
|
z[zIndex] = value;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
static void fillRegularizer(sd::LaunchContext* context, NDArray& ioMatrix, double const value) {
|
|
auto lastDimsTads = ConstantTadHelper::getInstance().tadForDimensions(ioMatrix.shapeInfo(), {-2, -1});
|
|
auto stream = context->getCudaStream();
|
|
auto rows = ioMatrix.sizeAt(-2);
|
|
//auto cols = ioMatrix.sizeAt(-1);
|
|
fillRegularizerKernel<T><<<256, 256, 128, *stream>>>(ioMatrix.dataBuffer()->specialAsT<T>(), ioMatrix.specialShapeInfo(), lastDimsTads.specialShapeInfo(), lastDimsTads.specialOffsets(), lastDimsTads.numberOfTads(), rows, (T)value);
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
int leastSquaresSolveFunctor_(sd::LaunchContext* context, NDArray const* leftInput, NDArray const* rightInput, double const l2Regularizer, bool const fast, NDArray* output) {
|
|
if (fast) { // Cholesky decomposition approach
|
|
// Equation for solve A^T * Ax = A^T * b, so
|
|
// 1. Computing A2:
|
|
auto tAtShape = ShapeUtils::evalShapeForMatmul(leftInput->shapeInfo(), leftInput->shapeInfo(), true, false);
|
|
//tAtShape[tAtShape.size() - 2] = output->sizeAt(-2);
|
|
NDArray leftOutput(leftInput->ordering(), tAtShape, output->dataType(), context);
|
|
MmulHelper::matmul(leftInput, leftInput, &leftOutput, true, false); // Computing A2 = A^T * A
|
|
// 2. Computing B' = A^T * b
|
|
auto rightOutput = output->ulike();
|
|
|
|
MmulHelper::matmul(leftInput, rightInput, &rightOutput, true, false); // Computing B' = A^T * b
|
|
// 3. Regularization ( indeed A' = A2 - l2Regularizer * I)
|
|
if (l2Regularizer != 0.0) {
|
|
auto regularizer = leftOutput.ulike(); regularizer.nullify();
|
|
fillRegularizer<T>(context, regularizer, (T)l2Regularizer);
|
|
leftOutput += regularizer;
|
|
}
|
|
|
|
// 4. Cholesky decomposition -- output matrix is square and lower triangular
|
|
helpers::cholesky(context, &leftOutput, &leftOutput, true); // inplace decomposition
|
|
// 5. Solve two triangular systems:
|
|
auto rightB = rightOutput.ulike(); rightB.nullify();
|
|
|
|
helpers::triangularSolveFunctor(context, &leftOutput, &rightOutput, true, false, &rightB);
|
|
|
|
helpers::adjointMatrix(context, &leftOutput, true, &leftOutput);
|
|
helpers::triangularSolveFunctor(context, &leftOutput, &rightB, false, false, output);
|
|
// All done
|
|
}
|
|
else { // QR decomposition approach
|
|
// Equation for solve Rx = Q^T * b, where A = Q * R, where Q - orthogonal matrix, and R - upper triangular
|
|
// 1. QR decomposition
|
|
auto qShape = leftInput->getShapeAsVector();
|
|
auto rShape = leftInput->getShapeAsVector();
|
|
qShape[leftInput->rankOf() - 1] = leftInput->sizeAt(-2);
|
|
|
|
NDArray Q(leftInput->ordering(), qShape, leftInput->dataType(), context);// = leftInput->ulike();
|
|
NDArray R(leftInput->ordering(), rShape, leftInput->dataType(), context); // = rightInput->ulike();
|
|
helpers::qr(context, leftInput, &Q, &R, true);
|
|
// 2. b` = Q^t * b:
|
|
auto rightOutput = rightInput->ulike();
|
|
MmulHelper::matmul(&Q, rightInput, &rightOutput, true, false);
|
|
// 3. Solve triangular system
|
|
helpers::triangularSolveFunctor(context, &R, &rightOutput, false, false, output);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
int leastSquaresSolveFunctor(sd::LaunchContext* context, NDArray const* leftInput, NDArray const* rightInput, double const l2Regularizer, bool const fast, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return leastSquaresSolveFunctor_, (context, leftInput, rightInput, l2Regularizer, fast, output), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|