cavis/libnd4j/include/ops/declarable/helpers/cuda/convolutions_pooling2d.cu

343 lines
14 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/convolutions.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <math/templatemath.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static __global__ void avgPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
// input is [bS, iC, iH, iW]
// output is [bS, iC, oH, oW]
const auto x = reinterpret_cast<const X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
if (threadIdx.x == 0) {
bS = shape::sizeAt(xShapeInfo, 0);
iC = shape::sizeAt(xShapeInfo, 1);
oH = shape::sizeAt(zShapeInfo, 2);
oW = shape::sizeAt(zShapeInfo, 3);
iH = shape::sizeAt(xShapeInfo, 2);
iW = shape::sizeAt(xShapeInfo, 3);
strideB = shape::stride(xShapeInfo)[0];
strideC = shape::stride(xShapeInfo)[1];
strideY = shape::stride(xShapeInfo)[2];
strideX = shape::stride(xShapeInfo)[3];
strideOB = shape::stride(zShapeInfo)[0];
strideOC = shape::stride(zShapeInfo)[1];
strideOY = shape::stride(zShapeInfo)[2];
strideOX = shape::stride(zShapeInfo)[3];
length = shape::length(zShapeInfo);
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
kHEff = kH + (kH-1)*(dH-1);
kWEff = kW + (kW-1)*(dW-1);
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
const int pw = index % oW;
const int ph = (index / oW) % oH;
const int c = (index / oW / oH) % iC;
const int n = index / oW / oH / iC;
int hstart = sH * ph - pH;
int wstart = sW * pw - pW;
int hend = hstart + kHEff;
int wend = wstart + kWEff;
if(hstart < 0){
int f = sd::math::nd4j_ceil<Z,int>((Z) -hstart / (Z)dH);
hstart += f * dH;
}
if(wstart < 0){
int f = sd::math::nd4j_ceil<Z,int>((Z) -wstart / (Z) dW);
wstart += f * dW;
}
if(hend > iH){
int f = sd::math::nd4j_ceil<Z,int>((Z) (hend-iH) / (Z) dH);
hend -= f * dH;
}
if(wend > iW){
int f = sd::math::nd4j_ceil<Z,int>((Z) (wend-iW) / (Z) dW);
wend -= f * dW;
}
//Accounts for dilation
int pool_size = sd::math::nd4j_ceil<double,int>((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil<double,int>((double) (wend-wstart) / (double) dW);
Z sum = 0.0f;
const X *inSlice = x + (n * strideB + c * strideC);
for (int h = hstart; h < hend; h += dH)
for (int w = wstart; w < wend; w += dW)
sum += static_cast<Z>(inSlice[h * strideY + w * strideX]);
int divide_factor = pool_size; //Case 0: exclude padding
if (extraParam0 == 1) //Case 1: include padding
divide_factor = kH * kW;
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sum / static_cast<Z>(divide_factor);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static void avgPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
avgPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static __global__ void pnormPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
// input is [bS, iC, iH, iW]
// output is [bS, iC, oH, oW]
const auto x = reinterpret_cast<const X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
__shared__ bool fOrder;
if (threadIdx.x == 0) {
bS = shape::sizeAt(xShapeInfo, 0);
iC = shape::sizeAt(xShapeInfo, 1);
oH = shape::sizeAt(zShapeInfo, 2);
oW = shape::sizeAt(zShapeInfo, 3);
iH = shape::sizeAt(xShapeInfo, 2);
iW = shape::sizeAt(xShapeInfo, 3);
strideB = shape::stride(xShapeInfo)[0];
strideC = shape::stride(xShapeInfo)[1];
strideY = shape::stride(xShapeInfo)[2];
strideX = shape::stride(xShapeInfo)[3];
strideOB = shape::stride(zShapeInfo)[0];
strideOC = shape::stride(zShapeInfo)[1];
strideOY = shape::stride(zShapeInfo)[2];
strideOX = shape::stride(zShapeInfo)[3];
length = shape::length(zShapeInfo);
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
kHEff = kH + (kH-1)*(dH-1);
kWEff = kW + (kW-1)*(dW-1);
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
const int pw = index % oW;
const int ph = (index / oW) % oH;
const int c = (index / oW / oH) % iC;
const int n = index / oW / oH / iC;
int hstart = sH * ph - pH;
int wstart = sW * pw - pW;
int hend = hstart + kHEff;
int wend = wstart + kWEff;
if (hstart < 0) {
int f = sd::math::nd4j_ceil<Z, int>((Z) -hstart / (Z) dH);
hstart += f * dH;
}
if (wstart < 0) {
int f = sd::math::nd4j_ceil<Z, int>((Z) -wstart / (Z) dW);
wstart += f * dW;
}
if (hend > iH) {
int f = sd::math::nd4j_ceil<Z, int>((Z) (hend - iH) / (Z) dH);
hend -= f * dH;
}
if (wend > iW) {
int f = sd::math::nd4j_ceil<Z, int>((Z) (wend - iW) / (Z) dW);
wend -= f * dW;
}
//Accounts for dilation
int pool_size = sd::math::nd4j_ceil<double, int>((double) (hend - hstart) / (double) dH) *
sd::math::nd4j_ceil<double, int>((double) (wend - wstart) / (double) dW);
Z sum = 0.f;
const X *inSlice = x + (n * strideB + c * strideC);
for (int h = hstart; h < hend; h += dH)
for (int w = wstart; w < wend; w += dW)
sum += sd::math::nd4j_pow<Z, Z, Z>(static_cast<Z>(sd::math::nd4j_abs<X>(inSlice[h * strideY + w * strideX])), extraParam0);
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sd::math::nd4j_pow<Z, Z, Z>(sum, (Z) 1.0f / extraParam0);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static void pnormPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
pnormPooling2dCuda<X, Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static __global__ void maxPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
// input is [bS, iC, iH, iW]
// output is [bS, iC, oH, oW]
const auto x = reinterpret_cast<const X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
__shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff;
__shared__ bool fOrder;
if (threadIdx.x == 0) {
bS = shape::sizeAt(xShapeInfo, 0);
iC = shape::sizeAt(xShapeInfo, 1);
oH = shape::sizeAt(zShapeInfo, 2);
oW = shape::sizeAt(zShapeInfo, 3);
iH = shape::sizeAt(xShapeInfo, 2);
iW = shape::sizeAt(xShapeInfo, 3);
strideB = shape::stride(xShapeInfo)[0];
strideC = shape::stride(xShapeInfo)[1];
strideY = shape::stride(xShapeInfo)[2];
strideX = shape::stride(xShapeInfo)[3];
strideOB = shape::stride(zShapeInfo)[0];
strideOC = shape::stride(zShapeInfo)[1];
strideOY = shape::stride(zShapeInfo)[2];
strideOX = shape::stride(zShapeInfo)[3];
length = shape::length(zShapeInfo);
//Replace kernel H/W with *effective* kernel H/W accounting for dilatyon
kHEff = kH + (kH-1)*(dH-1);
kWEff = kW + (kW-1)*(dW-1);
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int index = tid; index < length; index += blockDim.x * gridDim.x) {
const int pw = index % oW;
const int ph = (index / oW) % oH;
const int c = (index / oW / oH) % iC;
const int n = index / oW / oH / iC;
int hstart = sH * ph - pH;
int wstart = sW * pw - pW;
int hend = hstart + kHEff;
int wend = wstart + kWEff;
if(hstart < 0){
int f = sd::math::nd4j_ceil<Z,int>((Z) -hstart / (Z)dH);
hstart += f * dH;
}
if(wstart < 0){
int f = sd::math::nd4j_ceil<Z,int>((Z) -wstart / (Z) dW);
wstart += f * dW;
}
if(hend > iH){
int f = sd::math::nd4j_ceil<Z,int>((Z) (hend-iH) / (Z) dH);
hend -= f * dH;
}
if(wend > iW){
int f = sd::math::nd4j_ceil<Z,int>((Z) (wend-iW) / (Z) dW);
wend -= f * dW;
}
//Accounts for dilation
int pool_size = sd::math::nd4j_ceil<double,int>((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil<double,int>((double) (wend-wstart) / (double) dW);
Z max = -sd::DataTypeUtils::max<Z>();
const X *inSlice = x + (n * strideB + c * strideC);
for (int h = hstart; h < hend; h += dH) {
for (int w = wstart; w < wend; w += dW) {
Z v = static_cast<Z>(inSlice[h * strideY + w * strideX]);
if (v > max)
max = v;
}
}
z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = max;
}
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
static void maxPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) {
maxPooling2dCuda<X,Z><<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0);
}
//////////////////////////////////////////////////////////////////////////
void ConvolutionUtils::pooling2d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const PoolingType poolingMode, const int extraParam0) {
if(!input.isActualOnDeviceSide()) input.syncToDevice();
switch (poolingMode) {
case MAX_POOL: {
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), maxPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES);
}
break;
case AVG_POOL: {
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), avgPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES);
}
break;
case PNORM_POOL: {
BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), pnormPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES);
}
break;
default:
throw std::runtime_error("Pooling2D: Unknown PoolingType used");
}
output.tickWriteDevice();
input.tickReadDevice();
auto result = cudaStreamSynchronize(*block.launchContext()->getCudaStream());
if (result != 0)
throw cuda_exception::build("Pooling2D failed", result);
}
}
}