cavis/libnd4j/include/ops/declarable/helpers/cpu/updaterAmsGrad.cpp

127 lines
6.2 KiB
C++

/*******************************************************************************
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#include <ops/declarable/helpers/updatersHelpers.h>
#include <execution/Threads.h>
#include <math/platformmath.h>
#include <math/templatemath.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static void amsGradUpdater_(const NDArray& gradient, const NDArray& initStateV, const NDArray& initStateM, const NDArray& initStateH,
NDArray& update, NDArray& stateV, NDArray& stateM, NDArray& stateH, const double dLr, const double dBeta1, const double dBeta2, const double dEpsilon, const int nIteration) {
const T* grad = gradient.bufferAsT<T>();
const T* initV = initStateV.bufferAsT<T>();
const T* initM = initStateM.bufferAsT<T>();
const T* initH = initStateH.bufferAsT<T>();
T* up = update.bufferAsT<T>();
T* stV = stateV.bufferAsT<T>();
T* stM = stateM.bufferAsT<T>();
T* stH = stateH.bufferAsT<T>();
const T lr = static_cast<T>(dLr);
const T beta1 = static_cast<T>(dBeta1);
const T beta2 = static_cast<T>(dBeta2);
const T epsilon = static_cast<T>(dEpsilon);
const T iteration = static_cast<T>(nIteration);
T epsilonT = lr * sd::math::nd4j_sqrt<T, T>(1.0 - sd::math::nd4j_pow<T, T, T>(beta2, (iteration + 1))) / (1.0 - sd::math::nd4j_pow<T, T, T>(beta1, (iteration + 1)));
if (sd::math::nd4j_isnan(epsilonT) || 0 == epsilonT || sd::math::nd4j_isinf(epsilonT))
epsilonT = epsilon;
const T mbeta1 = (1 - beta1);
const T mbeta2 = (1 - beta2);
bool bEws1 = 1 == gradient.ews() && 1 == update.ews() && 1 == stateM.ews() && 1 == initStateM.ews() &&
1 == stateV.ews() && 1 == initStateV.ews() && 1 == stateH.ews() && 1 == initStateH.ews();
bool bSameOrdering = gradient.ordering() == update.ordering() &&
update.ordering() == stateV.ordering() &&
stateV.ordering() == initStateV.ordering() &&
stateV.ordering() == initStateM.ordering() &&
stateM.ordering() == initStateM.ordering() &&
stateM.ordering() == initStateH.ordering() && stateH.ordering() == initStateH.ordering();
if (bEws1 && bSameOrdering) {
auto func = PRAGMA_THREADS_FOR{
for (auto i = start; i < stop; i++) {
stM[i] = beta1 * initM[i] + grad[i] * mbeta1;
stV[i] = beta2 * initV[i] + grad[i] * grad[i] * mbeta2;
stH[i] = sd::math::nd4j_max(initH[i], stV[i]);
up[i] = epsilonT * stM[i] / (sd::math::nd4j_sqrt<T, T>(stH[i]) + epsilon);
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf(), 1);
return;
}
bool bXZsame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), update.shapeInfo());
bool bXInVSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), initStateV.shapeInfo());
bool bXStVSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), stateV.shapeInfo());
bool bXInMSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), initStateM.shapeInfo());
bool bXStMSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), stateM.shapeInfo());
bool bXInHSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), initStateH.shapeInfo());
bool bXStHSame = shape::haveSameShapeAndStrides(gradient.shapeInfo(), stateH.shapeInfo());
auto func = PRAGMA_THREADS_FOR{
int coords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, gradient.shapeInfo(), coords);
const auto xOffset = shape::getOffset(gradient.shapeInfo(), coords);
const auto zOffset = bXZsame ? xOffset : shape::getOffset(update.shapeInfo(), coords);
const auto initVOffset = bXInVSame ? xOffset : shape::getOffset(initStateV.shapeInfo(), coords);
const auto stVOffset = bXStVSame ? xOffset : shape::getOffset(stateV.shapeInfo(), coords);
const auto initMOffset = bXInMSame ? xOffset : shape::getOffset(initStateM.shapeInfo(), coords);
const auto stMOffset = bXStMSame ? xOffset : shape::getOffset(stateM.shapeInfo(), coords);
const auto initHOffset = bXInHSame ? xOffset : shape::getOffset(initStateH.shapeInfo(), coords);
const auto stHOffset = bXStHSame ? xOffset : shape::getOffset(stateH.shapeInfo(), coords);
stM[stMOffset] = beta1 * initM[initMOffset] + grad[xOffset] * mbeta1;
stV[stVOffset] = beta2 * initV[initVOffset] + grad[xOffset] * grad[xOffset] * mbeta2;
stH[stHOffset] = sd::math::nd4j_max(initH[initHOffset], stV[stVOffset]);
up[zOffset] = epsilonT * stM[stMOffset] / (sd::math::nd4j_sqrt<T, T>(stH[stHOffset]) + epsilon);
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf(), 1);
return;
}
void updaterAmsGrad(sd::LaunchContext* context, const NDArray& gradient, const NDArray& initStateV, const NDArray& initStateM, const NDArray& initStateH,
NDArray& update, NDArray& stateV, NDArray& stateM, NDArray& stateH, const double dLr, const double dBeta1, const double dBeta2, const double dEpsilon, const int nIteration) {
BUILD_SINGLE_SELECTOR(gradient.dataType(), amsGradUpdater_, (gradient, initStateV, initStateM, initStateH, update, stateV, stateM, stateH, dLr, dBeta1, dBeta2, dEpsilon, nIteration), FLOAT_TYPES);
}
}
}
}