98 lines
3.2 KiB
C++
98 lines
3.2 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by Yurii Shyrma on 12.12.2017
|
|
//
|
|
|
|
#include<ops/declarable/helpers/gammaMathFunc.h>
|
|
#include<ops/declarable/helpers/zeta.h>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// calculate factorial
|
|
template <typename T>
|
|
static FORCEINLINE T getFactorial(const int n) {
|
|
if (n < 0)
|
|
throw std::runtime_error("factorial is not defined for negative number !");
|
|
|
|
if(n==0 || n==1)
|
|
return (T)1.f;
|
|
|
|
T result = (T)1.f;
|
|
|
|
for(int i = 2; i <= n; ++i)
|
|
result *= i;
|
|
|
|
return result;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// implementation is based on serial representation written in terms of the Hurwitz zeta function as polygamma = (-1)^{n+1} * n! * zeta(n+1, x)
|
|
template <typename T>
|
|
static FORCEINLINE T polyGammaScalar(sd::LaunchContext * context, const int n, const T x) {
|
|
|
|
// if (n < 0)
|
|
// throw("polyGamma function: n must be >= 0 !");
|
|
|
|
// if (x <= (T)0.)
|
|
// throw("polyGamma function: x must be > 0 !");
|
|
|
|
int sign = (n + 1) % 2 ? -1 : 1;
|
|
// T factorial = (T)std::tgamma(n + 1);
|
|
|
|
return sign * getFactorial<T>(n) * zetaScalar<T>((T)(n + 1), x);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// calculate polygamma function for arrays
|
|
template <typename T>
|
|
static void polyGamma_(sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output) {
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
const T order = n.e<T>(i);
|
|
if(order != static_cast<int>(order)) // if order has fractional part then do not perform calculations and return NAN
|
|
output.p(i, std::numeric_limits<T>::quiet_NaN());
|
|
else if (order == 0) // polygamma function of zero order is digamma function
|
|
output.p(i, diGammaScalar<T>(x.e<T>(i)));
|
|
else
|
|
output.p(i, polyGammaScalar<T>(context, order, x.e<T>(i)));
|
|
}
|
|
};
|
|
samediff::Threads::parallel_for(func, 0, x.lengthOf());
|
|
}
|
|
|
|
void polyGamma(sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output) {
|
|
BUILD_SINGLE_SELECTOR(x.dataType(), polyGamma_, (context, n, x, output), FLOAT_TYPES);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void polyGamma_, (sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output), FLOAT_TYPES);
|
|
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|