184 lines
6.9 KiB
C++
184 lines
6.9 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/transforms.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <numeric>
|
|
#include <helpers/Loops.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<typename X, typename Y>
|
|
static void gatherND_(NDArray& input, NDArray& indices, NDArray& output) {
|
|
|
|
const X* x = reinterpret_cast<X*>(input.buffer());
|
|
const Y* y = reinterpret_cast<Y*>(indices.buffer());
|
|
X* z = reinterpret_cast<X*>(output.buffer());
|
|
|
|
const int xRank = input.rankOf();
|
|
const int yRank = indices.rankOf();
|
|
const int zRank = output.rankOf();
|
|
const int maxRank = sd::math::nd4j_max<int>(yRank, sd::math::nd4j_max<int>(xRank, zRank));
|
|
|
|
const Nd4jLong zLen = output.lengthOf();
|
|
|
|
const uint yLastDim = indices.sizeAt(-1);
|
|
|
|
const int diff = zRank - xRank;
|
|
const bool bEqual = yLastDim == xRank;
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
int xCoords[MAX_RANK], zCoords[MAX_RANK], temp;
|
|
|
|
for (auto i = start; i < stop; i++) {
|
|
|
|
shape::index2coordsCPU(start, i, output.shapeInfo(), zCoords);
|
|
|
|
const auto zOffset = shape::getOffset(output.shapeInfo(), zCoords);
|
|
|
|
temp = zCoords[yRank - 1];
|
|
zCoords[yRank - 1] = 0;
|
|
const auto yOffset = shape::getOffset(indices.shapeInfo(), zCoords);
|
|
zCoords[yRank - 1] = temp;
|
|
|
|
if(bEqual)
|
|
memcpy(xCoords, zCoords, zRank * sizeof(int));
|
|
else if(diff >= 0)
|
|
memcpy(xCoords, zCoords + diff, xRank * sizeof(int));
|
|
else
|
|
memcpy(xCoords - diff, zCoords, zRank * sizeof(int));
|
|
|
|
for (uint j = 0; j < yLastDim; ++j)
|
|
xCoords[j] = y[yOffset + j * indices.stridesOf()[yRank - 1]]; // last stride
|
|
|
|
const auto xOffset = shape::getOffset(input.shapeInfo(), xCoords);
|
|
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, zLen);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void gatherND(sd::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
|
|
BUILD_DOUBLE_SELECTOR(input.dataType(), indices.dataType(), gatherND_, (input, indices, output), LIBND4J_TYPES, INDEXING_TYPES);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void gather_(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
|
|
|
|
int axis = intArgs.size() > 0 ? intArgs[0] : 0;
|
|
const int inputRank = input->rankOf();
|
|
if(axis < 0)
|
|
axis += inputRank;
|
|
|
|
const int numOfIntArgs = intArgs.size();
|
|
|
|
if (indices != nullptr) {
|
|
|
|
for(Nd4jLong i = 0; i < indices->lengthOf(); ++i)
|
|
if(indices->e<Nd4jLong>(i) >= input->sizeAt(axis))
|
|
throw std::runtime_error("helpers::gather function: indices array contains wrong elements, each element must be smaller than corresponding dimension of input array !");
|
|
|
|
// first case: indices consist of only one scalar
|
|
if(indices->isScalar()) {
|
|
if(input->rankOf() <= 1){
|
|
//For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar
|
|
auto idx = indices->e<Nd4jLong>(0);
|
|
auto scalarNDArray = input->e(idx);
|
|
output->assign(scalarNDArray);
|
|
} else {
|
|
auto dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis});
|
|
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
|
|
|
|
auto tadArr = NDArray(reinterpret_cast<void *>(reinterpret_cast<T*>(input->buffer()) + tadPack.primaryOffsets()[indices->e<Nd4jLong>(0)]), tadPack.primaryShapeInfo(), output->getContext());
|
|
output->assign(&tadArr);
|
|
}
|
|
}
|
|
else if (input->rankOf() == 1 && indices->isVector()) {
|
|
// special case
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++)
|
|
output->p(e, input->e<T>(indices->e<Nd4jLong>(e)));
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, indices->lengthOf());
|
|
}
|
|
else {
|
|
|
|
std::vector<int> dimsOut(indices->rankOf());
|
|
std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... indices->rankOf()-1
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->shapeInfo(), dimsOut);
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
NDArray subArrOut = (*output)(i, dimsOut);
|
|
NDArray subArrIn = (*input)(indices->e<Nd4jLong>(i), {axis});
|
|
subArrOut.assign(subArrIn);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
|
|
}
|
|
}
|
|
else {
|
|
|
|
for(int i = 1; i < numOfIntArgs; ++i)
|
|
if(intArgs[i] >= input->sizeAt(axis))
|
|
throw std::runtime_error("helpers::gather function: some of input indexes is larger than corresponding shape of input array !");
|
|
|
|
// we only allow scalar/vector case here
|
|
if (numOfIntArgs == 2) { // scalar case
|
|
output->assign((*input)(intArgs[1], {axis}));
|
|
}
|
|
else { // vector case
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->shapeInfo(), {axis});
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
NDArray subArrOut = (*output)(i, {axis});
|
|
NDArray subArrIn = (*input)(intArgs[i + 1], {axis});
|
|
subArrOut.assign(subArrIn);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
void gather(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), gather_, (input, indices, output, intArgs), LIBND4J_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|