* Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
614 lines
22 KiB
C++
614 lines
22 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com, created on 07.10.2017.
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include <pointercast.h>
|
|
#include <helpers/shape.h>
|
|
#include <helpers/TAD.h>
|
|
#include <specials.h>
|
|
#include <dll.h>
|
|
#include <NDArray.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <types/types.h>
|
|
|
|
namespace nd4j {
|
|
|
|
/**
|
|
* Concatneate multi array of the same shape together
|
|
* along a particular dimension
|
|
*/
|
|
template <typename T>
|
|
void SpecialMethods<T>::concatCpuGeneric(int dimension, int numArrays, Nd4jPointer *data, Nd4jPointer *inputShapeInfo, void *vresult, Nd4jLong *resultShapeInfo) {
|
|
auto result = reinterpret_cast<T *>(vresult);
|
|
|
|
std::vector<Nd4jLong> iArgs = {dimension};
|
|
std::vector<double> tArgs;
|
|
std::vector<bool> bArgsEmpty;
|
|
std::vector<NDArray*> inputs(numArrays);
|
|
std::vector<NDArray*> outputs(1);
|
|
|
|
outputs[0] = new NDArray(static_cast<void*>(result), static_cast<Nd4jLong*>(resultShapeInfo));
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
inputs[i] = new NDArray(static_cast<void *>(data[i]), static_cast<Nd4jLong*>(inputShapeInfo[i]));
|
|
|
|
nd4j::ops::concat op;
|
|
auto status = op.execute(inputs, outputs, tArgs, iArgs, bArgsEmpty);
|
|
if(status != Status::OK())
|
|
throw std::runtime_error("concatCpuGeneric fails to be executed !");
|
|
|
|
delete outputs[0];
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
delete inputs[i];
|
|
}
|
|
|
|
/**
|
|
* This kernel accumulates X arrays, and stores result into Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::accumulateGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
// aggregation step
|
|
#ifdef _OPENMP
|
|
int _threads = omp_get_max_threads();
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
z[i] += x[ar][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This kernel averages X input arrays, and stores result to Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
* @param propagate
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::averageGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length, bool propagate) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
if (z == nullptr) {
|
|
//code branch for absent Z
|
|
z = x[0];
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
z[i] /= n;
|
|
}
|
|
|
|
#ifdef _OPENNMP
|
|
int _threads = omp_get_max_threads(); //nd4j::math::nd4j_min<int>(omp_get_max_threads() / 2, 4);
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
z[i] += x[ar][i] / n;
|
|
}
|
|
}
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
} else {
|
|
// code branch for existing Z
|
|
|
|
// memset before propagation
|
|
memset(z, 0, length * sizeof(T));
|
|
|
|
// aggregation step
|
|
#ifdef _OPENNMP
|
|
int _threads = omp_get_max_threads(); //nd4j::math::nd4j_min<int>(omp_get_max_threads() / 2, 4);
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
z[i] += x[ar][i] / n;
|
|
}
|
|
}
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
Nd4jLong SpecialMethods<T>::getPosition(Nd4jLong *xShapeInfo, Nd4jLong index) {
|
|
auto xEWS = shape::elementWiseStride(xShapeInfo);
|
|
|
|
if (xEWS == 1)
|
|
return index;
|
|
else if (xEWS > 1)
|
|
return index * xEWS;
|
|
else
|
|
return shape::getIndexOffset(index, xShapeInfo, shape::length(xShapeInfo));
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel_internal(T* array, Nd4jLong *xShapeInfo, int left, int right, int cutoff, bool descending) {
|
|
|
|
int i = left, j = right;
|
|
T tmp;
|
|
T pivot = array[getPosition(xShapeInfo, (left + right) / 2)];
|
|
|
|
|
|
{
|
|
/* PARTITION PART */
|
|
while (i <= j) {
|
|
if (descending) {
|
|
while (array[getPosition(xShapeInfo, i)] > pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] < pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
} else {
|
|
while (array[getPosition(xShapeInfo, i)] < pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] > pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
if (left < j){ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
if (i < right){ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}else{
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel(void *varray, Nd4jLong *xShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
|
auto array = reinterpret_cast<T *>(varray);
|
|
int cutoff = 1000;
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
{
|
|
#pragma omp single nowait
|
|
{
|
|
quickSort_parallel_internal(array, xShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::nextPowerOf2(int number) {
|
|
int pos = 0;
|
|
|
|
while (number > 0) {
|
|
pos++;
|
|
number = number >> 1;
|
|
}
|
|
return (int) pow(2, pos);
|
|
}
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::lastPowerOf2(int number) {
|
|
int p = 1;
|
|
while (p <= number)
|
|
p <<= 1;
|
|
|
|
p >>= 1;
|
|
return p;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortGeneric(void *vx, Nd4jLong *xShapeInfo, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortTadGeneric(void *vx, Nd4jLong *xShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
//quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
Nd4jLong xLength = shape::length(xShapeInfo);
|
|
Nd4jLong xTadLength = shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
int numTads = xLength / xTadLength;
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int r = 0; r < numTads; r++) {
|
|
T *dx = x + tadOffsets[r];
|
|
|
|
quickSort_parallel(dx, tadShapeInfo, xTadLength, 1, descending);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::decodeBitmapGeneric(void *dx, Nd4jLong N, void *vz, Nd4jLong *zShapeInfo) {
|
|
auto dz = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<int *>(dx);
|
|
Nd4jLong lim = N / 16 + 5;
|
|
|
|
FloatBits2 fb;
|
|
fb.i_ = x[2];
|
|
float threshold = fb.f_;
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 4; e < lim; e++) {
|
|
|
|
for (int bitId = 0; bitId < 16; bitId++) {
|
|
bool hasBit = (x[e] & 1 << (bitId) ) != 0;
|
|
bool hasSign = (x[e] & 1 << (bitId + 16) ) != 0;
|
|
|
|
if (hasBit) {
|
|
if (hasSign)
|
|
dz[(e - 4) * 16 + bitId] -= threshold;
|
|
else
|
|
dz[(e - 4) * 16 + bitId] += threshold;
|
|
} else if (hasSign) {
|
|
dz[(e - 4) * 16 + bitId] -= threshold / 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename S, typename T>
|
|
void SpecialTypeConverter::convertGeneric(Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz) {
|
|
auto x = reinterpret_cast<S *>(dx);
|
|
auto z = reinterpret_cast<T *>(dz);
|
|
|
|
if (N < nd4j::Environment::getInstance()->elementwiseThreshold()) {
|
|
for (int i = 0; i < N; i++) {
|
|
z[i] = static_cast<T>(x[i]);
|
|
}
|
|
} else {
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < N; i++) {
|
|
z[i] = static_cast<T>(x[i]);
|
|
}
|
|
}
|
|
};
|
|
BUILD_DOUBLE_TEMPLATE(template void SpecialTypeConverter::convertGeneric, (Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
template<typename T>
|
|
Nd4jLong SpecialMethods<T>::encodeBitmapGeneric(void *vx, Nd4jLong *xShapeInfo, Nd4jLong N, int *dz, float threshold) {
|
|
auto dx = reinterpret_cast<T *>(vx);
|
|
|
|
Nd4jLong retVal = 0L;
|
|
|
|
#pragma omp parallel for schedule(guided) proc_bind(close) reduction(+:retVal)
|
|
for (Nd4jLong x = 0; x < N; x += 16) {
|
|
|
|
int byte = 0;
|
|
int byteId = x / 16 + 4;
|
|
|
|
for (int f = 0; f < 16; f++) {
|
|
Nd4jLong e = x + f;
|
|
|
|
if (e >= N)
|
|
continue;
|
|
|
|
T val = dx[e];
|
|
T abs = nd4j::math::nd4j_abs<T>(val);
|
|
|
|
int bitId = e % 16;
|
|
|
|
if (abs >= (T) threshold) {
|
|
byte |= 1 << (bitId);
|
|
|
|
retVal++;
|
|
|
|
|
|
if (val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += threshold;
|
|
} else {
|
|
dx[e] -= threshold;
|
|
}
|
|
} else if (abs >= (T) threshold / (T) 2.0f && val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += threshold / 2;
|
|
|
|
retVal++;
|
|
}
|
|
}
|
|
|
|
dz[byteId] = byte;
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void quickSort_parallel_internal_key(X* key, Nd4jLong *xShapeInfo, Y* values, Nd4jLong *yShapeInfo, int left, int right, int cutoff, bool descending) {
|
|
auto length = shape::length(xShapeInfo);
|
|
int i = left, j = right;
|
|
X ktmp;
|
|
X pivot = key[shape::getIndexOffset((left + right) / 2, xShapeInfo, length)];
|
|
|
|
Y vtmp;
|
|
|
|
{
|
|
/* PARTITION PART */
|
|
while (i <= j) {
|
|
if (descending) {
|
|
while (key[shape::getIndexOffset(i, xShapeInfo, length)] > pivot)
|
|
i++;
|
|
while (key[shape::getIndexOffset(j, xShapeInfo, length)] < pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
ktmp = key[shape::getIndexOffset(i, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(i, xShapeInfo, length)] = key[shape::getIndexOffset(j, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(j, xShapeInfo, length)] = ktmp;
|
|
|
|
vtmp = values[shape::getIndexOffset(i, yShapeInfo, length)];
|
|
values[shape::getIndexOffset(i, yShapeInfo, length)] = values[shape::getIndexOffset(j, yShapeInfo, length)];
|
|
values[shape::getIndexOffset(j, yShapeInfo, length)] = vtmp;
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
} else {
|
|
while (key[shape::getIndexOffset(i, xShapeInfo, length)] < pivot)
|
|
i++;
|
|
while (key[shape::getIndexOffset(j, xShapeInfo, length)] > pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
ktmp = key[shape::getIndexOffset(i, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(i, xShapeInfo, length)] = key[shape::getIndexOffset(j, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(j, xShapeInfo, length)] = ktmp;
|
|
|
|
vtmp = values[shape::getIndexOffset(i, yShapeInfo, length)];
|
|
values[shape::getIndexOffset(i, yShapeInfo, length)] = values[shape::getIndexOffset(j, yShapeInfo, length)];
|
|
values[shape::getIndexOffset(j, yShapeInfo, length)] = vtmp;
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
if (left < j){ quickSort_parallel_internal_key(key, xShapeInfo, values, yShapeInfo, left, j, cutoff, descending); }
|
|
if (i < right){ quickSort_parallel_internal_key(key, xShapeInfo, values, yShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}else{
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal_key(key, xShapeInfo, values, yShapeInfo, left, j, cutoff, descending); }
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal_key(key, xShapeInfo, values, yShapeInfo, i, right, cutoff, descending); }
|
|
}
|
|
}
|
|
|
|
|
|
template <typename X, typename Y>
|
|
void quickSort_parallel_internal_value(X* key, Nd4jLong *xShapeInfo, Y* value, Nd4jLong *yShapeInfo, int left, int right, int cutoff, bool descending) {
|
|
auto length = shape::length(xShapeInfo);
|
|
int i = left, j = right;
|
|
X ktmp;
|
|
Y pivot = value[shape::getIndexOffset((left + right) / 2, yShapeInfo, length)];
|
|
|
|
Y vtmp;
|
|
|
|
{
|
|
/* PARTITION PART */
|
|
while (i <= j) {
|
|
if (descending) {
|
|
while (value[shape::getIndexOffset(i, yShapeInfo, length)] > pivot)
|
|
i++;
|
|
while (value[shape::getIndexOffset(j, yShapeInfo, length)] < pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
ktmp = key[shape::getIndexOffset(i, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(i, xShapeInfo, length)] = key[shape::getIndexOffset(j, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(j, xShapeInfo, length)] = ktmp;
|
|
|
|
vtmp = value[shape::getIndexOffset(i, yShapeInfo, length)];
|
|
value[shape::getIndexOffset(i, yShapeInfo, length)] = value[shape::getIndexOffset(j, yShapeInfo, length)];
|
|
value[shape::getIndexOffset(j, yShapeInfo, length)] = vtmp;
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
} else {
|
|
while (value[shape::getIndexOffset(i, yShapeInfo, length)] < pivot)
|
|
i++;
|
|
while (value[shape::getIndexOffset(j, yShapeInfo, length)] > pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
ktmp = key[shape::getIndexOffset(i, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(i, xShapeInfo, length)] = key[shape::getIndexOffset(j, xShapeInfo, length)];
|
|
key[shape::getIndexOffset(j, xShapeInfo, length)] = ktmp;
|
|
|
|
vtmp = value[shape::getIndexOffset(i, yShapeInfo, length)];
|
|
value[shape::getIndexOffset(i, yShapeInfo, length)] = value[shape::getIndexOffset(j, yShapeInfo, length)];
|
|
value[shape::getIndexOffset(j, yShapeInfo, length)] = vtmp;
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
if (left < j){ quickSort_parallel_internal_value(key, xShapeInfo, value, yShapeInfo, left, j, cutoff, descending); }
|
|
if (i < right){ quickSort_parallel_internal_value(key, xShapeInfo, value, yShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}else{
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal_value(key, xShapeInfo, value, yShapeInfo, left, j, cutoff, descending); }
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal_value(key, xShapeInfo, value, yShapeInfo, i, right, cutoff, descending); }
|
|
}
|
|
}
|
|
|
|
|
|
template <typename X, typename Y>
|
|
static void quickSort_parallel_key(void *varray, Nd4jLong *xShapeInfo, void *yarray, Nd4jLong *yShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
|
auto array = reinterpret_cast<X *>(varray);
|
|
auto values = reinterpret_cast<Y *>(yarray);
|
|
int cutoff = 1000;
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
{
|
|
#pragma omp single nowait
|
|
{
|
|
quickSort_parallel_internal_key(array, xShapeInfo, values, yShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
static void quickSort_parallel_value(void *varray, Nd4jLong *xShapeInfo, void *yarray, Nd4jLong *yShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
|
auto array = reinterpret_cast<X *>(varray);
|
|
auto values = reinterpret_cast<Y *>(yarray);
|
|
int cutoff = 1000;
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
{
|
|
#pragma omp single nowait
|
|
{
|
|
quickSort_parallel_internal_value(array, xShapeInfo, values, yShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void DoubleMethods<X,Y>::sortByKey(void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, bool descending) {
|
|
quickSort_parallel_key<X,Y>(vx, xShapeInfo, vy, yShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void DoubleMethods<X,Y>::sortByValue(void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, bool descending) {
|
|
quickSort_parallel_value<X,Y>(vx, xShapeInfo, vy, yShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void DoubleMethods<X,Y>::sortTadByKey(void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int *dimension, int dimensionLength, bool descending) {
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto y = reinterpret_cast<Y*>(vy);
|
|
|
|
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
|
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(yShapeInfo, dimension, dimensionLength);
|
|
|
|
auto xLength = shape::length(xShapeInfo);
|
|
auto xTadLength = shape::length(packX.primaryShapeInfo());
|
|
auto numTads = packX.numberOfTads();
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong r = 0; r < numTads; r++) {
|
|
auto dx = x + packX.primaryOffsets()[r];
|
|
auto dy = y + packY.primaryOffsets()[r];
|
|
|
|
quickSort_parallel_key<X,Y>(dx, packX.primaryShapeInfo(), dy, packY.primaryShapeInfo(), xTadLength, 1, descending);
|
|
}
|
|
}
|
|
|
|
template <typename X, typename Y>
|
|
void DoubleMethods<X,Y>::sortTadByValue(void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, int *dimension, int dimensionLength, bool descending) {
|
|
auto x = reinterpret_cast<X*>(vx);
|
|
auto y = reinterpret_cast<Y*>(vy);
|
|
|
|
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
|
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(yShapeInfo, dimension, dimensionLength);
|
|
|
|
auto xLength = shape::length(xShapeInfo);
|
|
auto xTadLength = shape::length(packX.primaryShapeInfo());
|
|
auto numTads = packX.numberOfTads();
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong r = 0; r < numTads; r++) {
|
|
auto dx = x + packX.primaryOffsets()[r];
|
|
auto dy = y + packY.primaryOffsets()[r];
|
|
|
|
quickSort_parallel_value<X,Y>(dx, packX.primaryShapeInfo(), dy, packY.primaryShapeInfo(), xTadLength, 1, descending);
|
|
}
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template class SpecialMethods, , LIBND4J_TYPES);
|
|
BUILD_DOUBLE_TEMPLATE(template class DoubleMethods, , LIBND4J_TYPES, LIBND4J_TYPES);
|
|
}
|
|
|