Go to file
raver119 7a2ac800dd
Nullify (#304)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* hamming distance nullification

Signed-off-by: raver119 <raver119@gmail.com>

* Add output array value assignment for testing/debugging

Signed-off-by: Alex Black <blacka101@gmail.com>

* don't assign empty arrays

Signed-off-by: raver119 <raver119@gmail.com>

* conv2d/conv3d/depthwise2d nullified

Signed-off-by: raver119 <raver119@gmail.com>

* conv2d/conv3d/depthwise2d nullified

Signed-off-by: raver119 <raver119@gmail.com>

* conv2d/conv3d/depthwise2d nullified

Signed-off-by: raver119 <raver119@gmail.com>

* few more fixes

Signed-off-by: raver119 <raver119@gmail.com>

* im2col

Signed-off-by: raver119 <raver119@gmail.com>

* pooling?

Signed-off-by: raver119 <raver119@gmail.com>

* more nullified

Signed-off-by: raver119 <raver119@gmail.com>

* ismax nullified

Signed-off-by: raver119 <raver119@gmail.com>

* rollback ismax nullification

Signed-off-by: raver119 <raver119@gmail.com>

* synchronized cublas handle use on per-device basis

Signed-off-by: raver119 <raver119@gmail.com>

* hiding method from jcpp

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of test assigns in DeclarableOp

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of assigns

Signed-off-by: raver119 <raver119@gmail.com>

* proper deviceId is back

Signed-off-by: raver119 <raver119@gmail.com>

* include fixed

Signed-off-by: raver119 <raver119@gmail.com>

Co-authored-by: Alex Black <blacka101@gmail.com>
2020-03-20 08:49:28 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter #8751 Arbiter grid search candidate generator fix [WIP] (#292) 2020-03-06 12:01:21 +11:00
datavec Support for more numpy datatypes (#241) 2020-03-19 00:48:37 +11:00
deeplearning4j DL4J integrations tests updates + add SameDiff support (#298) 2020-03-07 22:44:41 +11:00
docs Mention the new % unit for maxBytes and maxPhysicalBytes in Memory management documentation (#8435) (#8461) 2019-12-05 12:47:53 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j Nullify (#304) 2020-03-20 08:49:28 +03:00
nd4j Nullify (#304) 2020-03-20 08:49:28 +03:00
nd4s Test fixes + cleanup (#245) 2020-02-18 10:29:06 +11:00
pydatavec Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
pydl4j Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
rl4j Merge remote-tracking branch 'eclipse/master' 2020-03-18 16:17:14 +09:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore Remove the two files that get generated by javacpp to avoid conflicts. Also add them to .gitignore 2020-03-10 10:05:56 +00:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Fixes #8763 (#310) 2020-03-19 14:53:21 +09:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials