369 lines
22 KiB
C++
369 lines
22 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author saudet
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
using namespace mkldnn;
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
static void conv2d_mkldnn(nd4j::graph::Context &block, const NDArray *input, const NDArray *weights,
|
|
const NDArray *bias, NDArray *output, const int kH, const int kW, const int sH,
|
|
const int sW, int pH, int pW, const int dH, const int dW, const int isSameMode,
|
|
const int isNCHW) {
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW,
|
|
indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
if(isSameMode) // SAME
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
|
|
|
|
mkldnn_memory_desc_t empty;
|
|
mkldnn::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md(
|
|
empty);
|
|
mkldnn::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md(
|
|
empty);
|
|
mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
|
|
mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
|
|
bS, iC, iH, iW, oC, oH, oW, input, nullptr, weights, nullptr,
|
|
bias, output,
|
|
&conv_src_md, nullptr, &conv_weights_md, nullptr,
|
|
&conv_bias_md, &conv_dst_md,
|
|
&user_src_md, nullptr, &user_weights_md, nullptr,
|
|
&user_bias_md, &user_dst_md,
|
|
conv_strides, conv_padding, conv_padding_r, conv_dilation);
|
|
|
|
auto conv_desc = bias != nullptr
|
|
? convolution_forward::desc(prop_kind::forward,
|
|
algorithm::convolution_auto, conv_src_md,
|
|
conv_weights_md, conv_bias_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding,
|
|
conv_padding_r)
|
|
: convolution_forward::desc(prop_kind::forward,
|
|
algorithm::convolution_auto, conv_src_md,
|
|
conv_weights_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding,
|
|
conv_padding_r);
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
mkldnn::stream stream(engine);
|
|
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine);
|
|
auto user_src_memory = mkldnn::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
|
|
auto user_weights_memory = mkldnn::memory(user_weights_md, engine,
|
|
const_cast<NDArray *>(weights)->buffer());
|
|
auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
|
|
auto conv_src_memory = user_src_memory;
|
|
if (conv_prim_desc.src_desc() != user_src_memory.get_desc()) {
|
|
conv_src_memory = mkldnn::memory(conv_prim_desc.src_desc(), engine);
|
|
reorder(user_src_memory, conv_src_memory).execute(stream, user_src_memory, conv_src_memory);
|
|
}
|
|
auto conv_weights_memory = user_weights_memory;
|
|
if (conv_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
|
|
conv_weights_memory = mkldnn::memory(conv_prim_desc.weights_desc(), engine);
|
|
reorder(user_weights_memory, conv_weights_memory).execute(stream, user_weights_memory,
|
|
conv_weights_memory);
|
|
}
|
|
auto conv_dst_memory = user_dst_memory;
|
|
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
conv_dst_memory = mkldnn::memory(conv_prim_desc.dst_desc(), engine);
|
|
}
|
|
if (bias != nullptr) {
|
|
auto conv_bias_memory = mkldnn::memory(conv_prim_desc.bias_desc(), engine,
|
|
const_cast<NDArray *>(bias)->buffer());
|
|
convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC, conv_src_memory},
|
|
{MKLDNN_ARG_WEIGHTS, conv_weights_memory},
|
|
{MKLDNN_ARG_BIAS, conv_bias_memory},
|
|
{MKLDNN_ARG_DST, conv_dst_memory}});
|
|
} else {
|
|
convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC, conv_src_memory},
|
|
{MKLDNN_ARG_WEIGHTS, conv_weights_memory},
|
|
{MKLDNN_ARG_DST, conv_dst_memory}});
|
|
}
|
|
if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
reorder(conv_dst_memory, user_dst_memory).execute(stream, conv_dst_memory, user_dst_memory);
|
|
}
|
|
stream.wait();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(conv2d) {
|
|
auto input = INPUT_VARIABLE(
|
|
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC] always
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
auto output = OUTPUT_VARIABLE(
|
|
0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
|
|
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
bool isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) width
|
|
|
|
conv2d_mkldnn(block, input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(conv2d) {
|
|
// we don't want to use mkldnn if cpu doesn't support avx/avx2
|
|
if (::optimalLevel() < 2)
|
|
return false;
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
auto weights = INPUT_VARIABLE(1);
|
|
|
|
// conv2d is only available for float32 dtype
|
|
return block.isUseMKLDNN() && input->dataType() == nd4j::DataType::FLOAT32 &&
|
|
weights->dataType() == nd4j::DataType::FLOAT32;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(conv2d_bp) {
|
|
auto input = INPUT_VARIABLE(
|
|
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(
|
|
1); // [kH, kW, iC, oC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
|
|
2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(
|
|
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(
|
|
1); // [kH, kW, iC, oC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
int kH = INT_ARG(0); // filter(kernel) height
|
|
int kW = INT_ARG(1); // filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0,
|
|
"CUSTOM CONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !",
|
|
input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0,
|
|
"CUSTOM CONV2D_BP OP: rank of weights array must be equal to 4, but got %i instead !",
|
|
weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0,
|
|
"CUSTOM CONV2D_BP OP: rank of output's gradients (next epsilon) array must be equal to 4, but got %i instead !",
|
|
gradO->rankOf());
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC,
|
|
indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
if (isSameMode) // SAME
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);
|
|
|
|
mkldnn_memory_desc_t empty;
|
|
mkldnn::memory::desc conv_src_md(empty), conv_diff_src_md(empty), conv_weights_md(empty),
|
|
conv_diff_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty);
|
|
mkldnn::memory::desc user_src_md(empty), user_diff_src_md(empty), user_weights_md(empty),
|
|
user_diff_weights_md(empty), user_bias_md(empty), user_dst_md(empty);
|
|
mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
|
|
mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
|
|
bS, iC, iH, iW, oC, oH, oW, input, gradI, weights, gradW,
|
|
gradB, gradO,
|
|
&conv_src_md, &conv_diff_src_md, &conv_weights_md,
|
|
&conv_diff_weights_md, &conv_bias_md, &conv_dst_md,
|
|
&user_src_md, &user_diff_src_md, &user_weights_md,
|
|
&user_diff_weights_md, &user_bias_md, &user_dst_md,
|
|
conv_strides, conv_padding, conv_padding_r, conv_dilation);
|
|
auto conv_desc = gradB != nullptr
|
|
? convolution_forward::desc(prop_kind::forward,
|
|
algorithm::convolution_auto, conv_src_md,
|
|
conv_weights_md, conv_bias_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding,
|
|
conv_padding_r)
|
|
: convolution_forward::desc(prop_kind::forward,
|
|
algorithm::convolution_auto, conv_src_md,
|
|
conv_weights_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding,
|
|
conv_padding_r);
|
|
auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, mkldnnUtils::getEngine(
|
|
LaunchContext::defaultContext()->engine()));
|
|
if (gradW != nullptr) {
|
|
auto convW_desc = gradB != nullptr
|
|
? convolution_backward_weights::desc(
|
|
algorithm::convolution_auto, conv_src_md, conv_diff_weights_md, conv_bias_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
|
|
: convolution_backward_weights::desc(
|
|
algorithm::convolution_auto, conv_src_md, conv_diff_weights_md,
|
|
conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
mkldnn::stream stream(engine);
|
|
auto convW_prim_desc = convolution_backward_weights::primitive_desc(convW_desc, engine,
|
|
conv_prim_desc);
|
|
auto userW_src_memory = mkldnn::memory(user_src_md, engine,
|
|
const_cast<NDArray *>(input)->buffer());
|
|
auto userW_weights_memory = mkldnn::memory(user_diff_weights_md, engine, gradW->buffer());
|
|
auto userW_dst_memory = mkldnn::memory(user_dst_md, engine,
|
|
const_cast<NDArray *>(gradO)->buffer());
|
|
|
|
auto convW_src_memory = userW_src_memory;
|
|
if (convW_prim_desc.src_desc() != userW_src_memory.get_desc()) {
|
|
convW_src_memory = mkldnn::memory(convW_prim_desc.src_desc(), engine);
|
|
reorder(userW_src_memory, convW_src_memory).execute(stream, userW_src_memory,
|
|
convW_src_memory);
|
|
}
|
|
|
|
auto convW_weights_memory = userW_weights_memory;
|
|
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
|
|
convW_weights_memory = mkldnn::memory(convW_prim_desc.diff_weights_desc(), engine);
|
|
}
|
|
|
|
auto convW_dst_memory = userW_dst_memory;
|
|
if (convW_prim_desc.diff_dst_desc() != userW_dst_memory.get_desc()) {
|
|
convW_dst_memory = mkldnn::memory(convW_prim_desc.diff_dst_desc(), engine);
|
|
reorder(userW_dst_memory, convW_dst_memory).execute(stream, userW_dst_memory,
|
|
convW_dst_memory);
|
|
}
|
|
|
|
if (gradB != nullptr) {
|
|
auto convW_bias_memory = mkldnn::memory(convW_prim_desc.diff_bias_desc(), engine,
|
|
gradB->buffer());
|
|
convolution_backward_weights(convW_prim_desc).execute(stream,
|
|
{{MKLDNN_ARG_SRC, convW_src_memory},
|
|
{MKLDNN_ARG_DIFF_DST, convW_dst_memory},
|
|
{MKLDNN_ARG_DIFF_WEIGHTS, convW_weights_memory},
|
|
{MKLDNN_ARG_DIFF_BIAS, convW_bias_memory}});
|
|
} else {
|
|
convolution_backward_weights(convW_prim_desc).execute(stream,
|
|
{{MKLDNN_ARG_SRC, convW_src_memory},
|
|
{MKLDNN_ARG_DIFF_DST, convW_dst_memory},
|
|
{MKLDNN_ARG_DIFF_WEIGHTS, convW_weights_memory}});
|
|
}
|
|
|
|
if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
|
|
reorder(convW_weights_memory, userW_weights_memory).execute(stream, convW_weights_memory,
|
|
userW_weights_memory);
|
|
}
|
|
|
|
stream.wait();
|
|
}
|
|
|
|
if (gradI != nullptr) {
|
|
auto convI_desc =
|
|
convolution_backward_data::desc(algorithm::convolution_auto, conv_diff_src_md,
|
|
conv_weights_md, conv_dst_md, conv_strides, conv_dilation,
|
|
conv_padding, conv_padding_r);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
mkldnn::stream stream(engine);
|
|
auto convI_prim_desc = convolution_backward_data::primitive_desc(convI_desc, engine,
|
|
conv_prim_desc);
|
|
auto userI_src_memory = mkldnn::memory(user_diff_src_md, engine, gradI->buffer());
|
|
auto userI_weights_memory = mkldnn::memory(user_weights_md, engine,
|
|
const_cast<NDArray *>(weights)->buffer());
|
|
auto userI_dst_memory = mkldnn::memory(user_dst_md, engine,
|
|
const_cast<NDArray *>(gradO)->buffer());
|
|
|
|
auto convI_src_memory = userI_src_memory;
|
|
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
|
|
convI_src_memory = mkldnn::memory(convI_prim_desc.diff_src_desc(), engine);
|
|
}
|
|
|
|
auto convI_weights_memory = userI_weights_memory;
|
|
if (convI_prim_desc.weights_desc() != userI_weights_memory.get_desc()) {
|
|
convI_weights_memory = mkldnn::memory(convI_prim_desc.weights_desc(), engine);
|
|
reorder(userI_weights_memory, convI_weights_memory).execute(stream, userI_weights_memory,
|
|
convI_weights_memory);
|
|
}
|
|
|
|
auto convI_dst_memory = userI_dst_memory;
|
|
if (convI_prim_desc.diff_dst_desc() != userI_dst_memory.get_desc()) {
|
|
convI_dst_memory = mkldnn::memory(convI_prim_desc.diff_dst_desc(), engine);
|
|
reorder(userI_dst_memory, convI_dst_memory).execute(stream, userI_dst_memory,
|
|
convI_dst_memory);
|
|
}
|
|
|
|
convolution_backward_data(convI_prim_desc).execute(stream,
|
|
{{MKLDNN_ARG_DIFF_DST, convI_dst_memory},
|
|
{MKLDNN_ARG_WEIGHTS, convI_weights_memory},
|
|
{MKLDNN_ARG_DIFF_SRC, convI_src_memory}});
|
|
|
|
if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
|
|
reorder(convI_src_memory, userI_src_memory).execute(stream, convI_src_memory,
|
|
userI_src_memory);
|
|
}
|
|
|
|
stream.wait();
|
|
};
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(conv2d_bp) {
|
|
// we don't want to use mkldnn if cpu doesn't support avx/avx2
|
|
if (::optimalLevel() < 2)
|
|
return false;
|
|
|
|
auto input = INPUT_VARIABLE(
|
|
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(
|
|
1); // [kH, kW, iC, oC] always
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
|
|
2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(
|
|
0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(
|
|
1); // [kH, kW, iC, oC] always
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
|
|
return block.isUseMKLDNN() &&
|
|
nd4j::MKLDNNStream::isSupported({input, weights, bias, gradO, gradI, gradW, gradB});
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|
|
}
|