Go to file
Yurii Shyrma 78934c17ad
profiling of stack and unstack ops (#261)
* - profiling of stack and unstack ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - fix bug in cpu concat op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correction of cuda stack and unstack

Signed-off-by: Yurii <iuriish@yahoo.com>

* - change shape.h method which operates with unity dimensions strides

Signed-off-by: Yurii <iuriish@yahoo.com>

* - rearrange stack tests

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct evaluation of smallest stride for moving through contiguous axis

Signed-off-by: Yurii <iuriish@yahoo.com>

* - forgot to update signature of function strideOverContigAxis in cuda concat and split ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - remove ShapeUtils::shapeAsString method applied before input arrays validations

Signed-off-by: Yurii <iuriish@yahoo.com>

* -  further removing of ShapeUtils::shapeAsString

Signed-off-by: Yurii <iuriish@yahoo.com>

* - take sub-array shapeIndo/offset calculation out of NDArray class
- add possibility of contiguous memory copy in execTransformAny op if opNum == assign

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct test_empty_scatter_2 in EmptyTests.cpp

Signed-off-by: Yurii <iuriish@yahoo.com>

* - profiling of slice op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of contiguous memcpy for some cases in concat and split ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - forgot to declare oid nd4j::SpecialMethods<T>::splitCpuGeneric

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct typo in calculation of threads in cuda split op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - forgot to correct another set of threads variables in split cuda ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further conflicts resolving

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>
2020-03-03 07:32:37 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter Test fixes + cleanup (#245) 2020-02-18 10:29:06 +11:00
datavec Ignore none type for pythonexception (#237) 2020-02-13 09:58:39 +11:00
deeplearning4j Assorted SameDiff/DL4J fixes (#279) 2020-03-02 16:15:49 +11:00
docs Mention the new % unit for maxBytes and maxPhysicalBytes in Memory management documentation (#8435) (#8461) 2019-12-05 12:47:53 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j profiling of stack and unstack ops (#261) 2020-03-03 07:32:37 +03:00
nd4j one small test rearrangement 2020-03-02 19:52:11 +03:00
nd4s Test fixes + cleanup (#245) 2020-02-18 10:29:06 +11:00
pydatavec Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
pydl4j Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
rl4j Test fixes + cleanup (#245) 2020-02-18 10:29:06 +11:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Shugeo solve ls (#203) 2020-02-28 11:37:26 +03:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials