cavis/libnd4j/include/loops/cpu/reduce/reduce_float.hpp

232 lines
9.9 KiB
C++

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <types/types.h>
#include <system/op_boilerplate.h>
#include <loops/reduce_float.h>
#include <loops/legacy_ops.h>
#include <helpers/OmpLaunchHelper.h>
#include <helpers/Loops.h>
#include <helpers/ConstantTadHelper.h>
#include <helpers/ShapeBuilders.h>
using namespace simdOps;
namespace functions {
namespace reduce {
template <typename X, typename Z>
template <typename OpType>
void _CUDA_H ReduceFloatFunction<X,Z>::execScalar(const void *vx, const Nd4jLong *xShapeInfo,
void *vextraParams,
void *vz, const Nd4jLong *zShapeInfo) {
auto x = reinterpret_cast<const X *>(vx);
auto z = reinterpret_cast<Z *>(vz);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
const Nd4jLong length = shape::length(xShapeInfo);
auto xEws = shape::elementWiseStride(xShapeInfo);
if (shape::isEmpty(xShapeInfo)) {
if (std::is_same<OpType, simdOps::Mean<X,Z>>::value) {
z[0] = sd::DataTypeUtils::nanOrZero<Z>();
} else {
z[0] = OpType::startingValue(x);
}
return;
}
if(sd::ArrayOptions::arrayType(xShapeInfo) == sd::ArrayType::EMPTY) {
if(sd::ArrayOptions::arrayType(zShapeInfo) == sd::ArrayType::EMPTY)
return;
const auto startingVal = OpType::startingValue(x);
for (Nd4jLong i = 0; i < length; i++)
z[i] = startingVal;
return;
}
if (xEws > 0) {
z[0] = execScalar<OpType>(x, xEws, length, extraParams);
}
else {
auto startingValue = OpType::startingValue(x);
uint xShapeInfoCast[MAX_RANK];
const bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast);
int maxThreads = sd::math::nd4j_min<int>(64, sd::Environment::getInstance().maxThreads());
Z intermediate[64];
PRAGMA_OMP_SIMD
for (auto e = 0; e < maxThreads; e++)
intermediate[e] = OpType::startingValue(x);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++)
intermediate[thread_id] = OpType::update(intermediate[thread_id], OpType::op(x[shape::indexOffset(i, xShapeInfo, xShapeInfoCast, canCastX)], extraParams), extraParams);
};
maxThreads = samediff::Threads::parallel_for(func, 0, length, 1, maxThreads);
// merge results
for (int e = 1; e < maxThreads; e++)
intermediate[0] = OpType::update(intermediate[0], intermediate[e], extraParams);
// write out results
z[0] = OpType::postProcess(intermediate[0], length, extraParams);
}
}
template <typename X, typename Z>
template <typename OpType>
Z _CUDA_H ReduceFloatFunction<X, Z>::execScalar(const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams) {
auto x = reinterpret_cast<const X *>(vx);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
const Nd4jLong length = shape::length(xShapeInfo);
int xEws = shape::elementWiseStride(xShapeInfo);
if (xEws > 0) {
return execScalar<OpType>(x, xEws, length, extraParams);
}
else {
auto startingValue = OpType::startingValue(x);
uint xShapeInfoCast[MAX_RANK];
bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast);
for (Nd4jLong i = 0; i < length; i++)
startingValue = OpType::update(startingValue, OpType::op(x[shape::indexOffset(i, xShapeInfo, xShapeInfoCast, canCastX)], extraParams), extraParams);
return OpType::postProcess(startingValue, length, extraParams);
}
}
template <typename X, typename Y>
Y ReduceFloatFunction<X, Y>::execScalar(const int opNum,
const void *x, const Nd4jLong *xShapeInfo,
void *extraParams) {
RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(x, xShapeInfo, extraParams), REDUCE_FLOAT_OPS);
}
template <typename X, typename Y>
void ReduceFloatFunction<X, Y>::execScalar(const int opNum,
const void *x, const Nd4jLong *xShapeInfo,
void *extraParams,
void *z, const Nd4jLong *zShapeInfo) {
DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(x, xShapeInfo, extraParams, z, zShapeInfo), REDUCE_FLOAT_OPS);
}
template <typename X, typename Z>
template<typename OpType>
void _CUDA_H ReduceFloatFunction<X,Z>::exec(const void *x, const Nd4jLong *xShapeInfo,
void *extraParams,
void *vresult, const Nd4jLong *resultShapeInfo) {
// FIXME: wtf???
auto z = reinterpret_cast<Z*>(vresult);
z[0] = execScalar<OpType>(x, xShapeInfo, extraParams);
}
template <typename X, typename Z>
template <typename OpType>
Z _CUDA_H ReduceFloatFunction<X, Z>::execScalar(const void *vx, Nd4jLong xEws, Nd4jLong length, void *vextraParams) {
auto x = reinterpret_cast<const X *>(vx);
auto extraParams = reinterpret_cast<Z *>(vextraParams);
int maxThreads = sd::math::nd4j_min<int>(64, sd::Environment::getInstance().maxThreads());
Z intermediate[64];
PRAGMA_OMP_SIMD
for (auto e = 0; e < maxThreads; e++)
intermediate[e] = OpType::startingValue(x);
auto func = PRAGMA_THREADS_FOR {
if (xEws == 1) {
for (auto i = start; i < stop; i++)
intermediate[thread_id] = OpType::update(intermediate[thread_id], OpType::op(x[i], extraParams), extraParams);
} else {
for (auto i = start; i < stop; i++)
intermediate[thread_id] = OpType::update(intermediate[thread_id], OpType::op(x[i * xEws], extraParams), extraParams);
}
};
maxThreads = samediff::Threads::parallel_for(func, 0, length, 1, maxThreads);
// merge results
for (int e = 1; e < maxThreads; e++)
intermediate[0] = OpType::update(intermediate[0], intermediate[e], extraParams);
// return result
return OpType::postProcess(intermediate[0], length, extraParams);
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Z>
template<typename OpType>
void _CUDA_H ReduceFloatFunction<X, Z>::exec(sd::memory::Workspace* workspace, const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams, void *vz, const Nd4jLong *zShapeInfo, const int* dims) {
const X* x = reinterpret_cast<const X*>(vx);
Z* z = reinterpret_cast<Z*>(vz);
Z* extraParams = reinterpret_cast<Z*>(vextraParams);
const int xRank = shape::rank(xShapeInfo);
const int zRank = shape::rank(zShapeInfo);
if(sd::ArrayOptions::arrayType(xShapeInfo) == sd::ArrayType::EMPTY) {
const auto startingVal = std::is_same<OpType, simdOps::Mean<X,Z>>::value ? sd::DataTypeUtils::nanOrZero<Z>() : static_cast<Z>(OpType::startingValue(x));
const auto zLen = shape::length(zShapeInfo);
for (Nd4jLong i = 0; i < zLen; i++)
z[i] = startingVal;
return;
}
if (shape::length(zShapeInfo) == 1) {
z[0] = execScalar<OpType>(x, xShapeInfo, extraParams);
return;
}
if (OpType::requiresSpecialAccumulation) {
OpType::execSpecial(x, xShapeInfo, extraParams, z, zShapeInfo, const_cast<int*>(dims)+zRank, xRank-zRank, nullptr, nullptr);
return;
}
#ifdef INLINE_LOOPS
sd::ReductionLoops<X,Z,Z>::template loopReduce<OpType>(workspace, x, xShapeInfo, z, zShapeInfo, dims, extraParams);
#else
sd::ReductionFloatLoops<X,Z>::template innerloopReduce<OpType>(workspace, x, xShapeInfo, z, zShapeInfo, dims, extraParams);
#endif
}
////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
void ReduceFloatFunction<X, Y>::exec(const int opNum, sd::memory::Workspace* workspace, const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams, void *vz, const Nd4jLong *zShapeInfo, const int *dims) {
DISPATCH_BY_OPNUM_TT(exec, PARAMS(workspace, vx, xShapeInfo, vextraParams, vz, zShapeInfo, dims), REDUCE_FLOAT_OPS);
}
}
}